Skip to main content

Advertisement

Log in

Improving drug discovery with a hybrid deep generative model using reinforcement learning trained on a Bayesian docking approximation

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Generative approaches to molecular design are an area of intense study in recent years as a method to generate new pharmaceuticals with desired properties. Often though, these types of efforts are constrained by limited experimental activity data, resulting in either models that generate molecules with poor performance or models that are overfit and produce close analogs of known molecules. In this paper, we reduce this data dependency for the generation of new chemotypes by incorporating docking scores of known and de novo molecules to expand the applicability domain of the reward function and diversify the compounds generated during reinforcement learning. Our approach employs a deep generative model initially trained using a combination of limited known drug activity and an approximate docking score provided by a second machine learned Bayes regression model, with final evaluation of high scoring compounds by a full docking simulation. This strategy results in molecules with docking scores improved by 10–20% compared to molecules of similar size, while being 130 × faster than a docking only approach on a typical GPU workstation. We also show that the increased docking scores correlate with (1) docking poses with interactions similar to known inhibitors and (2) result in higher MM-GBSA binding energies comparable to the energies of known DDR1 inhibitors, demonstrating that the Bayesian model contains sufficient information for the network to learn to efficiently interact with the binding pocket during reinforcement learning. This outcome shows that the combination of the learned latent molecular representation along with the feature-based docking regression is sufficient for reinforcement learning to infer the relationship between the molecules and the receptor binding site, which suggest that our method can be a powerful tool for the discovery of new chemotypes with potential therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All necessary data and code to evaluate or reproduce this work are publicly available through the cited sources, or included as supplemental files with this submission. Data: Training data as curated by our team is available as a supplemental file. The sources of the molecules are indicated in Supplementary Table 1. Software: Smina can be obtained from https://sourceforge.net/projects/smina/. The GENTRL source code can be obtained from https://github.com/insilicomedicine/GENTRL. Information for how to obtain scikit-learn is available at https://scikit-learn.org/.

References

  1. Lyu J, Irwin JJ, Shoichet BK (2023) Modeling the expansion of virtual screening libraries. Nat Chem Biol 19:712–718. https://doi.org/10.1038/s41589-022-01234-w

    Article  CAS  PubMed  Google Scholar 

  2. Lyu J, Wang S, Balius TE et al (2019) Ultra-large library docking for discovering new chemotypes. Nature 566:224–229. https://doi.org/10.1038/s41586-019-0917-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Irwin JJ, Tang KG, Young J et al (2020) ZINC20—a free ultralarge-scale chemical database for ligand discovery. J Chem Inf Model 60:6065–6073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shivanyuk AN, Ryabukhin SV, Tolmachev A et al (2007) Enamine real database: making chemical diversity real. Chemistry today 25:58–59

    CAS  Google Scholar 

  5. Varela-Rial A, Majewski M, De Fabritiis G (2022) Structure based virtual screening: Fast and slow. WIREs Comput Mol Sci 12:e1544. https://doi.org/10.1002/wcms.1544

    Article  CAS  Google Scholar 

  6. Bragina ME, Daina A, Perez MA et al (2022) The SwissSimilarity 2021 web tool: novel chemical libraries and additional methods for an enhanced ligand-based virtual screening experience. Int J Mol Sci 23:811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Martinelli DD (2022) Generative machine learning for de novo drug discovery: a systematic review. Comput Biol Med 145:105403. https://doi.org/10.1016/j.compbiomed.2022.105403

    Article  PubMed  Google Scholar 

  8. Coleman RG, Carchia M, Sterling T et al (2013) Ligand pose and orientational sampling in molecular docking. PLoS ONE 8:e75992. https://doi.org/10.1371/journal.pone.0075992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xu W, Lucke AJ, Fairlie DP (2015) Comparing sixteen scoring functions for predicting biological activities of ligands for protein targets. J Mol Graph Model 57:76–88. https://doi.org/10.1016/j.jmgm.2015.01.009

    Article  CAS  PubMed  Google Scholar 

  10. Zhavoronkov A, Ivanenkov YA, Aliper A et al (2019) Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat Biotechnol 37:1038–1040. https://doi.org/10.1038/s41587-019-0224-x

    Article  CAS  PubMed  Google Scholar 

  11. Gainor JF, Chabner BA (2015) Ponatinib: accelerated disapproval. Oncologist 20:847–848. https://doi.org/10.1634/theoncologist.2015-0253

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zeng X, Wang F, Luo Y et al (2022) Deep generative molecular design reshapes drug discovery. Cell Rep Med. https://doi.org/10.1016/j.xcrm.2022.100794

    Article  PubMed  PubMed Central  Google Scholar 

  13. Li Y, Zhang L, Wang Y et al (2022) Generative deep learning enables the discovery of a potent and selective RIPK1 inhibitor. Nat Commun 13:6891. https://doi.org/10.1038/s41467-022-34692-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Grant LL, Sit CS (2021) De novo molecular drug design benchmarking. RSC Med Chem 12:1273–1280. https://doi.org/10.1039/D1MD00074H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vella D, Ebejer J-P (2022) Few-shot learning for low-data drug discovery. J Chem Inf Model. https://doi.org/10.1021/acs.jcim.2c00779

    Article  PubMed  Google Scholar 

  16. Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50:742–754

    Article  CAS  PubMed  Google Scholar 

  17. Jeon W, Kim D (2020) Autonomous molecule generation using reinforcement learning and docking to develop potential novel inhibitors. Sci Rep 10:22104. https://doi.org/10.1038/s41598-020-78537-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Thomas M, Smith RT, O’Boyle NM et al (2021) Comparison of structure- and ligand-based scoring functions for deep generative models: a GPCR case study. J Cheminform 13:39. https://doi.org/10.1186/s13321-021-00516-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sadybekov AA, Sadybekov AV, Liu Y et al (2022) Synthon-based ligand discovery in virtual libraries of over 11 billion compounds. Nature 601:452–459. https://doi.org/10.1038/s41586-021-04220-9

    Article  CAS  PubMed  Google Scholar 

  20. Gentile F, Yaacoub JC, Gleave J et al (2022) Artificial intelligence–enabled virtual screening of ultra-large chemical libraries with deep docking. Nat Protoc 17:672–697

    Article  CAS  PubMed  Google Scholar 

  21. Berenger F, Kumar A, Zhang KYJ, Yamanishi Y (2021) Lean-docking: exploiting ligands’ predicted docking scores to accelerate molecular docking. J Chem Inf Model 61:2341–2352. https://doi.org/10.1021/acs.jcim.0c01452

    Article  CAS  PubMed  Google Scholar 

  22. Bucinsky L, Bortňák D, Gall M et al (2022) Machine learning prediction of 3CL SARS-CoV-2 docking scores. Comput Biol Chem 98:107656. https://doi.org/10.1016/j.compbiolchem.2022.107656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. MolFinder: an evolutionary algorithm for the global optimization of molecular properties and the extensive exploration of chemical space using SMILES | Journal of Cheminformatics | Full Text. https://jcheminf.biomedcentral.com/articles/https://doi.org/10.1186/s13321-021-00501-7. Accessed 21 Jun 2023

  24. Ciepliński T, Danel T, Podlewska S, Jastrzȩbski S (2023) Generative models should at least be able to design molecules that dock well: a new benchmark. J Chem Inf Model 63:3238–3247. https://doi.org/10.1021/acs.jcim.2c01355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gómez-Bombarelli R, Wei JN, Duvenaud D et al (2018) Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent Sci 4:268–276

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kusner MJ, Paige B, Hernández-Lobato JM (2017) Grammar variational autoencoder. In: International conference on machine learning. PMLR, pp 1945–1954

  27. Olivecrona M, Blaschke T, Engkvist O, Chen H (2017) Molecular de-novo design through deep reinforcement learning. J Cheminform 9:48. https://doi.org/10.1186/s13321-017-0235-x

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gao Y, Zhou J, Li J (2021) Discoidin domain receptors orchestrate cancer progression: a focus on cancer therapies. Cancer Sci 112:962–969. https://doi.org/10.1111/cas.14789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Moll S, Desmoulière A, Moeller MJ et al (2019) DDR1 role in fibrosis and its pharmacological targeting. Biochimica et Biophysica Acta (BBA) - Mol Cell Res 1866:118474. https://doi.org/10.1016/j.bbamcr.2019.04.004

    Article  CAS  Google Scholar 

  30. Tian Y, Bai F, Zhang D (2022) New target DDR1: A “double-edged sword” in solid tumors. Biochimica et Biophysica Acta (BBA) -Rev Cancer 1878:188829

    Article  Google Scholar 

  31. Hinton GE, Roweis S (2002) Stochastic neighbor embedding. Advances in neural information processing systems 15. https://proceedings.neurips.cc/paper_files/paper/2002/hash/6150ccc6069bea6b5716254057a194ef-Abstract.html

  32. Koes DR, Baumgartner MP, Camacho CJ (2013) Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J Chem Inf Model 53:1893–1904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine learning in python. J Machine Learn Res 12:2825–2830

    Google Scholar 

  34. Kohonen T (1990) The self-organizing map. Proc IEEE 78:1464–1480

    Article  Google Scholar 

  35. Kaiser TM, Burger PB, Butch CJ et al (2018) A machine learning approach for predicting HIV reverse transcriptase mutation susceptibility of biologically active compounds. J Chem Inf Model 58:1544–1552

    Article  CAS  PubMed  Google Scholar 

  36. Kaiser TM, Dentmon ZW, Dalloul CE et al (2020) Accelerated discovery of novel ponatinib analogs with improved properties for the treatment of parkinson’s disease. ACS Med Chem Lett 11:491–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pribut N, Kaiser TM, Wilson RJ et al (2020) Accelerated discovery of potent fusion inhibitors for respiratory syncytial virus. ACS Infect Dis 6:922–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cox BD, Prosser AR, Sun Y et al (2015) Pyrazolo-piperidines exhibit dual inhibition of CCR5/CXCR4 HIV entry and reverse transcriptase. ACS Med Chem Lett 6:753–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shi Q, Kaiser TM, Dentmon ZW et al (2015) Design and validation of FRESH, a drug discovery paradigm resting on robust chemical synthesis. ACS Med Chem Lett 6:518–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lipinski CA (2004) Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1:337–341

    Article  CAS  PubMed  Google Scholar 

  41. Pan Y, Huang N, Cho S, MacKerell AD (2003) Consideration of molecular weight during compound selection in virtual target-based database screening. J Chem Inf Comput Sci 43:267–272

    Article  CAS  PubMed  Google Scholar 

  42. Bajusz D, Rácz A, Héberger K (2015) Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J Chem 7:1–13

    CAS  Google Scholar 

  43. Bouysset C, Fiorucci S (2021) ProLIF: a library to encode molecular interactions as fingerprints. J Cheminform 13:72. https://doi.org/10.1186/s13321-021-00548-6

    Article  PubMed  PubMed Central  Google Scholar 

  44. Eastman P, Swails J, Chodera JD et al (2017) OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLoS Comput Biol 13:e1005659

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tuccinardi T (2021) What is the current value of MM/PBSA and MM/GBSA methods in drug discovery? Expert Opin Drug Discov 16:1233–1237. https://doi.org/10.1080/17460441.2021.1942836

    Article  CAS  PubMed  Google Scholar 

  46. Altae-Tran H, Ramsundar B, Pappu AS, Pande V (2017) Low data drug discovery with one-shot learning. ACS Cent Sci 3:283–293. https://doi.org/10.1021/acscentsci.6b00367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mendez D, Gaulton A, Bento AP et al (2019) ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res 47:D930–D940

    Article  CAS  PubMed  Google Scholar 

  48. Gabrielson SW (2018) SciFinder. J Med Libr Assoc: JMLA 106:588

    Article  PubMed Central  Google Scholar 

  49. Polykovskiy D, Zhebrak A, Sanchez-Lengeling B et al (2020) Molecular sets (MOSES): a benchmarking platform for molecular generation models. Front Pharmacol 11:565644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sterling T, Irwin JJ (2015) ZINC 15–ligand discovery for everyone. J Chem Inf Model 55:2324–2337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Trott O, Olson AJ (2009) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem NA-NA. https://doi.org/10.1002/jcc.21334

    Article  Google Scholar 

  52. Richter H, Satz AL, Bedoucha M et al (2018) DNA-encoded library-derived DDR1 inhibitor prevents fibrosis and renal function loss in a genetic mouse model of Alport syndrome. ACS Chem Biol 14:37–49

    Article  PubMed  PubMed Central  Google Scholar 

  53. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  54. Bento AP, Hersey A, Félix E et al (2020) An open source chemical structure curation pipeline using RDKit. J Cheminform 12:1–16

    Article  Google Scholar 

  55. Halgren TA (1996) Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem 17:490–519

    Article  CAS  Google Scholar 

  56. O’Boyle NM, Banck M, James CA et al (2011) Open Babel: an open chemical toolbox. J Cheminform 3:1–14

    Google Scholar 

  57. Vettigli G (2022) MiniSom

Download references

Acknowledgements

Support for this work was provided by start up funds issued by Nanjing University and by Ice-Kredit.

Funding

Support for this work was provided by startup funds issued by Nanjing University and by Ice-Kredit.

Author information

Authors and Affiliations

Authors

Contributions

YWs numbered as in the author order. YX YW1 YW2 PY CB and JW collected and analyzed data and created figures. YW3 LG and CB developed and guided the research. CB wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Lingyun Gu or Christopher J. Butch.

Ethics declarations

Conflict of interest

LG is the CEO and shareholder of IceKredit.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2426 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Y., Wang, Y., Wang, Y. et al. Improving drug discovery with a hybrid deep generative model using reinforcement learning trained on a Bayesian docking approximation. J Comput Aided Mol Des 37, 507–517 (2023). https://doi.org/10.1007/s10822-023-00523-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-023-00523-3

Keywords

Navigation