Skip to main content
Log in

Coupled Poromechanics and Adsorption in Multiple-Porosity Solids

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

This paper presents a general constitutive model to describe the coupling among bulk solid stress, pore fluid pressure, and adsorption in a fluid-saturated multiple-porosity elastic solid. The general case of N coexisting porosities is considered. Each porosity system may contain fluid in the free or adsorbed phase, as well as in both phases. Thus, the utility of the developed constitutive relations extends to materials with complex pore structures, which may involve several scales of pore size. These relations are obtained from the thermodynamic free energy density function for deformation of the porous solid frame while incorporating the surface energy stored at the interface between the pore fluid and solid phase. A number of previously published models for coupled adsorption and poroelasticity in microporous and mesoporous materials are examined as special cases. Possible means of estimating the constitutive model parameters are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Gor, G.Y., Huber, P., and Bernstein, N., Adsorption-Induced Deformation of Nanoporous Materials—A Review, Appl. Phys. Rev., 2017, vol. 4, p. 011303. https://doi.org/10.1063/1.4975001

    Article  Google Scholar 

  2. Hol, S. and Spiers, C.J., Competition between Adsorption-Induced Swelling and Elastic Compression of Coal at CO2 Pressures up to 100 MPa, J. Mech. Phys. Solids, 2012, vol. 60, pp. 1862–1882. https://doi.org/10.1016/j.jmps.2012.06.012

    Article  ADS  Google Scholar 

  3. Pini, R., Ottiger, S., Burlini, L., Storti, G., and Mazzotti, M., Role of Adsorption and Swelling on the Dynamics of Gas Injection in Coal, J. Geophys. Res. B, 2009, vol. 114, p. 04203. https://doi.org/10.1029/2008JB005961

    Article  ADS  Google Scholar 

  4. Eskandari-Ghadi, M. and Zhang, Y., Mechanics of Shrinkage–Swelling Transition of Microporous Materials at the Initial Stage of Adsorption, Int. J. Solids Struct., 2021, vol. 222–223, p. 111041. https://doi.org/10.1016/j.ijsolstr.2021.111041

    Article  Google Scholar 

  5. Palmer, I. and Mansoori, J., Permeability Depends on Stress and Pore Pressure in Coalbeds: A New Model, SPE Res. Eval. Eng., 1998, vol. 1(6), pp. 539–544. https://doi.org/10.2118/52607-PA

    Article  Google Scholar 

  6. Shi, J.Q. and Durucan, S., Drawdown Induced Changes in Permeability of Coalbeds: A New Interpretation of the Reservoir Response to Primary Recovery, Transp. Porous Med., 2004, vol. 56(1), pp. 1–16. https://doi.org/10.1023/B:TIPM.0000018398.19928.5a

    Article  Google Scholar 

  7. Connell, L.D. and Detournay, C., Coupled Flow and Geomechanical Processes during Enhanced Coal Seam Methane Recovery through CO2 Sequestration, Int. J. Coal Geol., 2009, vol. 77(1–2), pp. 222–233. https://doi.org/10.1016/j.coal.2008.09.013

    Article  Google Scholar 

  8. Cui, X. and Bustin, R.M., Volumetric Strain Associated with Methane Desorption and Its Impact on Coalbed Gas Production from Deep Coal Seams, AAPG Bull., 2005, vol. 89(9), pp. 1181–1202. https://doi.org/10.1306/05110504114

    Article  Google Scholar 

  9. Biot, M.A., General Theory of Three-Dimensional Consolidation, J. Appl. Phys., 1941, vol. 12, pp. 155–164.

    Article  ADS  Google Scholar 

  10. Biot, M.A. and Willis, D.G., The Elastic Coefficients of the Theory of Consolidation, J. Appl. Phys., 1957, vol. 24, pp. 594–601. https://doi.org/10.1063/1.1712886

    Article  Google Scholar 

  11. Bowen, R.M., Incompressible Porous Media Models by Use of the Theory of Mixtures, Int. J. Eng. Sci., 1980, vol. 18(9), pp. 1129–1148. https://doi.org/10.1016/0020-7225(80)90114-7

    Article  Google Scholar 

  12. Bowen, R.M., Compressible Porous Media Models by Use of the Theory of Mixtures, Int. J. Eng. Sci., 1982, vol. 20(6), pp. 697–735. https://doi.org/10.1016/0020-7225(82)90082-9

    Article  Google Scholar 

  13. Coussy, O., Dormieux, L., and Detournay, E., From Mixture Theory to Biot’s Approach for Porous Media, Int. J. Solids Struct., 1998, vol. 24, pp. 3508–3524. https://doi.org/10.1016/S0020-7683(98)00087-0

    Article  Google Scholar 

  14. Coussy, O., Poromechanics, Chichester: Wiley, 2004. https://doi.org/10.1002/0470092718

  15. Zhang, Q. and Borja, R.I., Poroelastic Coefficients for Anisotropic Single and Double Porosity Media, Acta Geotech., 2021, vol. 16, pp. 3013–3025. https://doi.org/10.1007/s11440-021-01184-y

    Article  Google Scholar 

  16. Zhang, Q., Yan, X., and Shao, J., Fluid Flow through Anisotropic and Deformable Double Porosity Media with Ultra-Low Matrix Permeability: A Continuum Framework, J. Pet. Sci. Eng., 2021, vol. 200, p. 108349. https://doi.org/10.1016/j.petrol.2021.108349

    Article  Google Scholar 

  17. Zhang, Q., Yan, X., and Li, Z., A Mathematical Framework for Multiphase Poromechanics in Multiple Porosity Media, Comp. Geotech., 2022, vol. 146, p. 104728. https://doi.org/10.1016/j.compgeo.2022.104728

    Article  Google Scholar 

  18. Zhang, W. and Mehrabian, A., Full Coupling of CO2–CH4 Transport and Sorption with Solid Deformation in Gas Shale Enhances Natural Gas Recovery and Geological CO2 Storage Capacity, J. Nat. Gas Sci. Eng., 2022, vol. 106, p. 104736. https://doi.org/10.1016/j.jngse.2022.104736

    Article  Google Scholar 

  19. Coussy, O., Mechanics and Physics of Porous Solids, Chichester, UK: John Wiley & Sons, Ltd., 2010. https://doi.org/10.1002/9780470710388

  20. Vandamme, M., Brochard, L., Lecampion, B., and Coussy, O., Adsorption and Strain: The CO2-Induced Swelling of Coal, J. Mech. Phys. Solids, 2010, vol. 58, pp. 1489–1505. https://doi.org/10.1016/j.jmps.2010.07.014

    Article  ADS  Google Scholar 

  21. Detsi, E., Chen, Z.G., Vellinga, W.P., Onck, P.R., and De Hosson, J.T.M., Reversible Strain by Physisorption in Nanoporous Gold, Appl. Phys. Lett., 2011, vol. 99, p. 083104. https://doi.org/10.1063/1.3625926

    Article  Google Scholar 

  22. Liu, M., Zhang, Y., Wu, J., Gan, Y., and Chen, C.Q., Analytical Solutions for Elastic Response of Coated Mesoporous Materials to Pore Pressure, Int. J. Eng. Sci., 2016, vol. 107, pp. 68–76. https://doi.org/10.1016/j.ijengsci.2016.07.010

    Article  Google Scholar 

  23. Barrer, R.M., Flow into and through Zeolite Beds and Compacts, Langmuir, 1987, vol. 3(3), pp. 309–315. https://doi.org/10.1021/la00075a003

    Article  Google Scholar 

  24. Brochard, L. and Honório, Y., Revisiting Thermo-Poromechanics under Adsorption: Formulation without Assuming Gibbs–Duhem Equation, Int. J. Eng. Sci., 2020, vol. 152, p. 103296. https://doi.org/10.1016/j.ijengsci.2020.103296

    Article  Google Scholar 

  25. Brochard, L., Vandamme, M., and Pellenq, R.J.M., Poromechanics of Microporous Media, J. Mech. Phys. Solids, 2012, vol. 60, pp. 606–622. https://doi.org/10.1016/j.jmps.2012.01.001

    Article  ADS  MathSciNet  Google Scholar 

  26. Perrier, L., Pijaudier-Cabot, G., and Grégoire, D., Poromechanics of Adsorption-Induced Swelling in Microporous Materials: A New Poromechanical Model Taking into Account Strain Effects on Adsorption, Continuum Mech. Thermodyn., 2015, vol. 27, pp. 195–209. https://doi.org/10.1007/s00161-014-0359-4

    Article  ADS  MathSciNet  Google Scholar 

  27. Nikoosokhan, S., Vandamme, M., and Dangla, P., A Poromechanical Model for Coal Seams Injected with Carbon Dioxide: From an Isotherm of Adsorption to a Swelling of the Reservoir, Oil Gas Sci. Technol. Rev. IFP Energies Nouvelles, 2012, vol. 67, pp. 777–786. https://doi.org/10.2516/ogst/2012048

    Article  Google Scholar 

  28. Espinoza, D.N., Vandamme, J.M., Dangla, P., Pereira, J.M., and Vidal-Gilbert, S., A Transverse Isotropic Model for Microporous Solids: Application to Coal Matrix Adsorption and Swelling, J. Geophys. Res. Solid Earth, 2013, vol. 118, pp. 6113–6123. https://doi.org/10.1002/2013JB010337

    Article  ADS  Google Scholar 

  29. Espinoza, D.N., Vandamme, M., Pereira, J.M., Dangla, P., and Vidal-Gilbert, S., Measurement and Modeling of Adsorptive-Poromechanical Properties of Bituminous Coal Cores Exposed to CO2: Adsorption, Swelling Strains, Swelling Stresses and Impact on Fracture Permeability, Int. J. Coal Geol., 2014, vol. 134–135, pp. 80–95. https://doi.org/10.1016/j.coal.2014.09.010

    Article  Google Scholar 

  30. Espinoza, D.N., Vandamme, M., Dangla, P., Pereira, J.M., and Vidal-Gilbert, S., Adsorptive-Mechanical Properties of Reconstituted Granular Coal: Experimental Characterization and Poromechanical Modeling, Int. J. Coal Geol., 2016, vol. 162, pp. 158–168. https://doi.org/10.1016/j.coal.2016.06.003

    Article  Google Scholar 

  31. Zhang, Y., Mechanics of Adsorption–Deformation Coupling in Porous Media, J. Mech. Phys. Solids, 2018, vol. 114, pp. 31–54. https://doi.org/10.1016/j.jmps.2018.02.009

    Article  ADS  MathSciNet  Google Scholar 

  32. Grégoire, D., Malheiro, C., and Miqueu, C., Estimation of Adsorption-Induced Pore Pressure and Confinement in a Nanoscopic Slit Pore by a Density Functional Theory, Continuum Mech. Thermodyn., 2018, vol. 30, pp. 347–363. https://doi.org/10.1016/j.jmps.2018.02.009

    Article  ADS  MathSciNet  Google Scholar 

  33. Chen, M., Coasne, B., Derome, D., and Carmeliet, J., Coupling of Sorption and Deformation in Soft Nanoporous Polymers: Molecular Simulation and Poromechanics, J. Mech. Phys. Solids, 2020, vol. 137, p. 103830. https://doi.org/10.1016/j.jmps.2019.103830

    Article  MathSciNet  Google Scholar 

  34. Kulasinski, K., Guyer, R., Derome, D., and Carmeliet, J., Poroelastic Model for Adsorption-Induced Deformation of Biopolymers Obtained from Molecular Simulations, Phys. Rev. E, 2015, vol. 92(2), p. 022605. https://doi.org/10.1103/PhysRevE.92.022605

    Article  ADS  Google Scholar 

  35. Gor, G.Y. and Neimark, A.V., Adsorption-Induced Deformation of Mesoporous Solids, Langmuir, 2010, vol. 26, p. 13021. https://doi.org/10.1021/la1019247

    Article  Google Scholar 

  36. Pijaudier-Cabot, G., Vermorel, R., Miqueu, C., and Mendiboure, B., Revisiting Poromechanics in the Context of Microporous Materials, Comptes Rendus Méc., 2011, vol. 339, p. 770. https://doi.org/10.1016/j.crme.2011.09.003

    Article  ADS  Google Scholar 

  37. Cowin, S.C., Gailani, G., and Benalla, M., Hierarchical Poroelasticity: Movement of Interstitial Fluid between Porosity Levels in Bones, Philos. Trans. Roy. Soc. A. Math. Phys. Eng. Sci., 2009, vol. 367(1902), pp. 3401–3444. https://www.jstor.org/stable/40485675

    Article  ADS  Google Scholar 

  38. Tully, B. and Ventikos, Y., Cerebral Water Transport Using Multiple-Network Poroelastic Theory: Application to Normal Pressure Hydrocephalus, J. Fluid Mech., 2011, vol. 667, pp. 188–215. https://doi.org/10.1017/S0022112010004428

    Article  ADS  MathSciNet  Google Scholar 

  39. Curtis, M.E., Sondergeld, C.H., Ambrose, R.J., and Rai, C.S., Microstructural Investigation of Gas Shales in Two and Three Dimensions Using Nanometer-Scale Resolution Imaging, Microstructure of Gas Shales, AAPG Bull., 2012, vol. 96(4), pp. 665–677. https://doi.org/10.1306/08151110188

    Article  Google Scholar 

  40. Slatt, R.M. and Abousleiman, Y., Merging Sequence Stratigraphy and Geomechanics for Unconventional Gas Shales, The Leading Edge, 2011, vol. 30(3), pp. 274–282. https://doi.org/10.1190/1.3567258

    Article  Google Scholar 

  41. Zhang, W., Xu, J., Jiang, R., Cui, Y., Qiao, J., Kang, C., and Lu, Q., Employing a Quad-Porosity Numerical Model to Analyze the Productivity of Shale Gas Reservoir, J. Pet. Sci. Eng., 2017, vol. 157, pp. 1046–1055. https://doi.org/10.1016/j.petrol.2017.07.031

    Article  Google Scholar 

  42. Barenblatt, G.I., Zheltov, I.P., and Kochina, I.N., Basic Concepts in the Theory of Seepage of Homogeneous Liquids in Fissured Rocks, J. Appl. Math. Mech., 1960, vol. 24(5), pp. 1286–1303. https://doi.org/10.1016/0021-8928(60)90107-6

    Article  Google Scholar 

  43. Wilson, R.K. and Aifantis, E.C., On the Theory of Consolidation with Double Porosity, Int. J. Eng. Sci., 1982, vol. 20(9), pp. 1009–1035. https://doi.org/10.1016/0020-7225(82)90036-2

    Article  Google Scholar 

  44. Beskos, D.E. and Aifantis, E.C., On the Theory of Consolidation with Double Porosity—II, Int. J. Eng. Sci., 1986, vol. 24, pp. 1697–1716. https://doi.org/10.1016/0020-7225(86)90076-5

    Article  Google Scholar 

  45. Auriault, J.L. and Boutin, C., Deformable Porous Media with Double Porosity. Quasi-Statics. I. Coupling Effects, Transp. Porous Med., 1992, vol. 7, pp. 63–82. https://doi.org/10.1007/BF00617317

    Article  Google Scholar 

  46. Elsworth, D. and Bai, M., Flow-Deformation Response of Dual-Porosity Media, J. Geotech. Eng., 1992, vol. 118(1), pp. 107–124. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:1(107)

    Article  Google Scholar 

  47. Berryman, J.G. and Wang, H.F., The Elastic Coefficients of Double-Porosity Models for Fluid Transport in Jointed Rock, J. Geophys. Res. Sol. E, 1995, vol. 100(B12), pp. 24611–24627. https://doi.org/10.1029/95JB02161

    Article  ADS  Google Scholar 

  48. Berryman, J.G., Extension of Poroelastic Analysis to Double-Porosity Materials: New Technique in Microgeomechanics, J. Eng. Mech., 2002, vol. 128(8), pp. 840–847. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:8(840)

    Article  Google Scholar 

  49. Rohan, E., Naili, S., and Lemaire, T., Double Porosity in Fluid-Saturated Elastic Media: Deriving Effective Parameters by Hierarchical Homogenization of Static Problem, Continuum Mech. Thermodyn., 2016, vol. 28, pp. 1263–1293. https://doi.org/10.1007/s00161-015-0475-9

    Article  ADS  MathSciNet  Google Scholar 

  50. Svanadze, M., Potential Method in the Coupled Theory of Elastic Double-Porosity Materials, Acta Mechanica, 2021, vol. 232, pp. 2307–2329. https://doi.org/10.1007/s00707-020-02921-2

    Article  MathSciNet  Google Scholar 

  51. Hellmich, C., Celundova, D., and Ulm, F.J., Multiporoelasticity of Hierarchically Structured Materials: Micromechanical Foundations and Application to Bone, J. Eng. Mech., 2009, vol. 135(5), pp. 382–394. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000001

    Article  Google Scholar 

  52. Mehrabian, A. and Abousleiman, Y.N., Generalized Biot’s Theory and Mandel’s Problem of Multiple-Porosity and Multiple-Permeability Poroelasticity, J. Geophys. Res. Solid Earth, 2014, vol. 119(4), pp. 2745–2763. https://doi.org/10.1002/2013JB010602

    Article  ADS  Google Scholar 

  53. Mehrabian, A. and Abousleiman, Y.N., Gassmann Equations and the Constitutive Relations for Multiple-Porosity and Multiple-Permeability Poroelasticity with Applications to Oil and Gas Shale, Int. J. Num. Anal. Methods Geomech., 2015, vol. 39(14), pp. 1547–1569. https://doi.org/10.1002/nag.2399

    Article  Google Scholar 

  54. Gawor, M. and Skoczylas, N., Sorption Rate of Carbon Dioxide on Coal, Trans. Porous Media, 2014, vol. 101, pp. 269–279. https://doi.org/10.1007/s11242-013-0244-9

    Article  Google Scholar 

  55. Mehrabian, A., The Poroelastic Constants of Multiple-Porosity Solids, Int. J. Eng. Sci., 2018, vol. 132, pp. 97–104. https://doi.org/10.1016/j.ijengsci.2018.08.002

    Article  MathSciNet  Google Scholar 

  56. Liu, C., Mehrabian, A., and Abousleiman, Y.N., Theory and Analytical Solutions to Coupled Processes of Transport and Deformation in Dual-Porosity Dual-Permeability Poro-Chemo-Electro-Elastic Media, J. Appl. Mech., 2018, vol. 85(11), p. 111006. https://doi.org/10.1115/1.4040890

    Article  Google Scholar 

  57. Cammarata, R.C., Surface and Interface Stress Effects in Thin Films, Prog. Surf. Sci., 1994, vol. 46, pp. 1–38.

    Article  ADS  Google Scholar 

  58. Mehrabian, A. and Abousleiman, Y.N., Theory and Analytical Solution to Cryer's Problem of N-Porosity and N-Permeability Poroelasticity, J. Mech. Phys. Solids, 2018, vol. 118, pp. 218–227. https://doi.org/10.1016/j.jmps.2018.05.011

    Article  ADS  MathSciNet  Google Scholar 

  59. Langmuir, I., The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum, J. Am. Chem. Soc., 1918, vol. 40, pp. 1403–1461. https://doi.org/10.1021/ja02242a004

    Article  Google Scholar 

  60. Shuttleworth, R., The Surface Tension of Solids, Proc. Phys. Soc. A, 1950, vol. 63, p. 444. https://doi.org/10.1088/0370-1298/63/5/302

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mehrabian.

Additional information

Translated from Fizicheskaya Mezomekhanika, 2023, Vol. 26, No. 2, pp. 43–56.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Mehrabian, A. Coupled Poromechanics and Adsorption in Multiple-Porosity Solids. Phys Mesomech 26, 402–414 (2023). https://doi.org/10.1134/S1029959923040033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959923040033

Keywords:

Navigation