Skip to main content
Log in

Hierarchy of generalized continua issued from micromorphic medium constructed by homogenization

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The present contribution provides a classification of generalized continua constructed by a micromechanical approach, relying on an extension of the Hill macrohomogeneity condition. The virtual power of equilibrium for a micromorphic effective medium is derived from the microscopic Cauchy balance equations, highlighting the classical and higher-order macroscopic stress tensors. The so-called homogeneous displacement associated with the micromorphic effective medium is derived from variational formulations. It allows establishing the extended Hill macrohomogeneity condition that prevails for the micromorphic continuum, wherein the higher-order stress tensors arise as the static variables conjugated to the selected macroscopic degrees of freedom. Suitable projections of the introduced kinematic micromorphic variables into degenerated kinematic variables lead to various subclasses of generalized continua: microstretch, micropolar, couple stress, microdilatation, microstrain, microshear, and strain gradient. An asymptotic ranking of the formulated generalized continua versus a small-scale parameter is formulated in the last part of the paper to quantify their relative importance. The micromorphic homogenization scheme is validated by comparing the predictions of the homogenized response at the macroscale for a double shear test to a reference exact solution. The proposed micromorphic homogenization method remedy most of the limitations of the existing schemes of the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Alavi, E., Ganghoffer, J.F., Reda, H., Sadighi, M.: Construction of micromorphic continua by homogenization based on variational principles. J. Mech. Phys. Solids 153, 104278 (2021)

    Article  MathSciNet  Google Scholar 

  2. Alavi, S.E., Nasimsobhan, M., Ganghoffer, J.F., Sinoimeri, A., Sadighi, M.: Chiral Cosserat model for architected materials constructed by homogenization. Meccanica 56(10), 2547–2574 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Auffray, N., Bouchet, R., Brechet, Y.: Strain gradient elastic homogenization of bidimensional cellular media. Int. J. Solids Struct. 47(13), 1698–1710 (2010)

    Article  MATH  Google Scholar 

  4. Barbagallo, G., Tallarico, D., D’Agostino, M.V., Aivaliotis, A., Neff, P., Madeo, A.: Relaxed micromorphic model of transient wave propagation in anisotropic band-gap metastructures. Int. J. Solids Struct. 162, 148–163 (2019). https://doi.org/10.1016/j.ijsolstr.2018.11.033

    Article  Google Scholar 

  5. Barboura, S., Li, J.: Establishment of strain gradient constitutive relations by using asymptotic analysis and the finite element method for complex periodic microstructures. Int. J. Solids Struct. 136–137, 60–76 (2018). https://doi.org/10.1016/j.ijsolstr.2017.12.003

    Article  Google Scholar 

  6. Berkache, K., Deogekar, S., Goda, I., Ganghoffer, J.F.: Construction of second gradient continuum models for random fibrous networks and analysis of size effects. Compos. Struct. 18, 347–357 (2017)

    Article  Google Scholar 

  7. Biswas, R., Poh, L.H.: A micromorphic computational homogenization framework for heterogeneous materials. J. Mech. Phys. Solids 102, 187–208 (2017). https://doi.org/10.1016/j.jmps.2017.02.012

    Article  MathSciNet  ADS  Google Scholar 

  8. Biswas, R., Poh, L.H., Shedbale, A.S.: A micromorphic computational homogenization framework for auxetic tetra-chiral structures. J. Mech. Phys. Solids 135, 103801 (2020). https://doi.org/10.1016/j.jmps.2019.103801

    Article  MathSciNet  Google Scholar 

  9. Biswas, R., Shedbale, A.S., Poh, L.H.: Nonlinear analyses with a micromorphic computational homogenization framework for composite materials. Comput. Methods Appl. Mech. Eng. 350, 362–395 (2019). https://doi.org/10.1016/j.cma.2019.03.012

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. Boutin, C.: Microstructural effects in elastic composites. Int. J. Solids Struct. 33, 1023–1051 (1996). https://doi.org/10.1016/0020-7683(95)00089-5

    Article  MATH  Google Scholar 

  11. Carlin, M.: Computing geometric moments for objects with an exact polygonal representation (1998)

  12. Cosserat, E., Cosserat, F.: Théorie des Corps déformables. Nature 81, 67–67 (1909). https://doi.org/10.1038/081067a0

  13. De Bellis, M.L., Addessi, D.: A Cosserat based multi-scale model for masonry structures. Int. J. Multiscale Comput. Eng. 9, 543–563 (2011). https://doi.org/10.1615/IntJMultCompEng.2011002758

    Article  Google Scholar 

  14. Eringen, A.C.: Nonlocal Polar Field theories. In: Continuum Physics. Elsevier, pp. 205–267. https://doi.org/10.1016/B978-0-12-240804-5.50009-9 (1976)

  15. Eringen, A.C.: Mechanics of micromorphic continua. In: Mechanics of Generalized Continua. Springer, Berlin, pp. 18–35. https://doi.org/10.1007/978-3-662-30257-6_2 (1968)

  16. Eringen, A.C., Kafadar, C.B.: Part I. Polar field theories. Contin. Phys. 1–73 (1971)

  17. Forest, S.: Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J. Eng. Mech. 135, 117–131 (2009). https://doi.org/10.1061/(ASCE)0733-9399(2009)135:3(117)

    Article  Google Scholar 

  18. Forest, S.: Homogenization methods and mechanics of generalized continua—part 2. Theor. Appl. Mech. 113–144,(2002). https://doi.org/10.2298/TAM0229113F

  19. Forest, S.: Aufbau und Identifikation von Stoffgleichungen für höhere Kontinua mittels Homogenisierungsmethoden. Technische Mechanik. Sci. J. Fund. Appl. Eng. Mech. 19, 297–306 (1999)

  20. Forest, S.: Mechanics of generalized continua: construction by homogenizaton. Le Journal de Physique IV 08, Pr4-39-Pr4-48. https://doi.org/10.1051/jp4:1998405 (1998)

  21. Forest, S., Sab, K.: Cosserat overall modeling of heterogeneous materials. Mech. Res. Commun. 25, 449–454 (1998). https://doi.org/10.1016/S0093-6413(98)00059-7

    Article  MathSciNet  MATH  Google Scholar 

  22. Forest, S., Pradel, F., Sab, K.: Asymptotic Analysis of Heterogeneous Cosserat Media. Int. J. Solids Struct. 38, 4585–4608 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Forest, S., Sievert, R.: Nonlinear microstrain theories. Int. J. Solids Struct. 43, 7224–7245 (2006). https://doi.org/10.1016/j.ijsolstr.2006.05.012

    Article  MathSciNet  MATH  Google Scholar 

  24. Forest, S., Sievert, R.: Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mech. 160, 71–111 (2003). https://doi.org/10.1007/s00707-002-0975-0

    Article  MATH  Google Scholar 

  25. Forest, S., Trinh, D.K.: Generalized continua and non-homogeneous boundary conditions in homogenisation methods. ZAMM J. Appl. Math. Mech. / Zeitschrift für Angewandte Mathematik und Mechanik 91, 90–109 (2011). https://doi.org/10.1002/zamm.201000109

  26. Ganghoffer, J.F., Reda, H.: A variational approach of homogenization of heterogeneous materials towards second gradient continua. Mech. Mater. 158, 103743 (2021)

    Article  Google Scholar 

  27. Ganghoffer, J.F., Wazne, A., Reda, H.: Frontiers in homogenization methods towards generalized continua for architected materials. Mech. Res. Commun. 130, 104114 (2023)

    Article  Google Scholar 

  28. Germain, P.: The method of virtual power in continuum mechanics. Part 2: microstructure. SIAM J. Appl. Math. 25, 556–575 (1973). https://doi.org/10.1137/0125053

  29. Germain, Paul: La méthode des puissances virtuelles en mécanique des milieux continus, premiere partie: théorie du second gradient. Journal de mécanique 12, 235–274 (1973)

    MathSciNet  MATH  Google Scholar 

  30. Goda, I., Ganghoffer, J.F.: Combined bone internal and external remodeling based on Eshelby stress. Int. J. Solids Struct. 94–95, 138–157 (2016)

    Article  Google Scholar 

  31. Gologanu, M., Leblond, J.-B., Perrin, G., Devaux, J.: Recent extensions of Gurson’s model for porous ductile metals. In: Continuum Micromechanics. Springer Vienna, Vienna, pp. 61–130. https://doi.org/10.1007/978-3-7091-2662-2_2 (1997)

  32. Hill, R.: On constitutive macro-variables for heterogeneous solids at finite strain. In: Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 326, 131–147. https://doi.org/10.1098/rspa.1972.0001 (1972)

  33. Hill, R.: The essential structure of constitutive laws for metal composites and polycrystals. J. Mech. Phys. Solids 15, 79–95 (1967). https://doi.org/10.1016/0022-5096(67)90018-X

    Article  ADS  Google Scholar 

  34. Hill, R.: Generalized constitutive relations for incremental deformation of metal crystals by multislip. J. Mech. Phys. Solids 14, 95–102 (1966). https://doi.org/10.1016/0022-5096(66)90040-8

    Article  ADS  Google Scholar 

  35. Hill, R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11, 357–372 (1963). https://doi.org/10.1016/0022-5096(63)90036-X

    Article  MATH  ADS  Google Scholar 

  36. Howes, F.A., Whitaker, S.: The spatial averaging theorem revisited. Chem. Eng. Sci. 40, 1387–1392 (1985). https://doi.org/10.1016/0009-2509(85)80078-6

    Article  Google Scholar 

  37. Huet, C.: Application of variational concepts to size effects in elastic heterogeneous bodies. J. Mech. Phys. Solids 38(6), 813–841 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  38. Hütter, G.: On the micro-macro relation for the microdeformation in the homogenization towards micromorphic and micropolar continua. J. Mech. Phys. Solids 127, 62–79 (2019). https://doi.org/10.1016/j.jmps.2019.03.005

    Article  MathSciNet  ADS  Google Scholar 

  39. Hütter, G.: Micromorphic homogenisation and its application to a model of ductile damage. PAMM 17, 599–600 (2017). https://doi.org/10.1002/pamm.201710269

    Article  Google Scholar 

  40. Hütter, G.: An extended Coleman-Noll procedure for generalized continuum theories. Contin. Mech. Thermodyn. 28, 1935–1941 (2016). https://doi.org/10.1007/s00161-016-0506-1

    Article  MathSciNet  MATH  ADS  Google Scholar 

  41. Hütter, G., Mühlich, U., Kuna, M.: Micromorphic homogenization of a porous medium: elastic behavior and quasi-brittle damage. Contin. Mech. Thermodyn. 27, 1059–1072 (2015). https://doi.org/10.1007/s00161-014-0402-5

    Article  MathSciNet  MATH  ADS  Google Scholar 

  42. Jänicke, R., Diebels, S., Sehlhorst, H.-G., Düster, A.: Two-scale modelling of micromorphic continua. Contin. Mech. Thermodyn. 21, 297–315 (2009). https://doi.org/10.1007/s00161-009-0114-4

    Article  MathSciNet  MATH  ADS  Google Scholar 

  43. Jänicke, R., Steeb, H.: Minimal loading conditions for higher-order numerical homogenisation schemes. Arch. Appl. Mech. 82, 1075–1088 (2012). https://doi.org/10.1007/s00419-012-0614-8

    Article  MATH  ADS  Google Scholar 

  44. Javadi, M., Epstein, M., Asghari, M.: Thermomechanics of material growth and remodeling in uniform bodies based on the micromorphic theory. J. Mech. Phys. Solids 138, 103904 (2020). https://doi.org/10.1016/j.jmps.2020.103904

    Article  MathSciNet  MATH  Google Scholar 

  45. Ju, X., Mahnken, R.: Goal-oriented h-type adaptive finite elements for micromorphic elastoplasticity. Comput. Methods Appl. Mech. Eng. 351, 297–329 (2019). https://doi.org/10.1016/j.cma.2019.01.031

    Article  MathSciNet  MATH  ADS  Google Scholar 

  46. Kanit, T., Forest, S., Galliet, I., Mounoury, V., Jeulin, D.: Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int. J. Solids Struct. 40(13–14), 3647–3679 (2003)

    Article  MATH  Google Scholar 

  47. Kouznetsova, V., Geers, M.G.D., Brekelmans, W.A.M.: Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int. J. Numer. Meth. Eng. 54, 1235–1260 (2002). https://doi.org/10.1002/nme.541

    Article  MATH  Google Scholar 

  48. Langenfeld, K., Mosler, J.: A micromorphic approach for gradient-enhanced anisotropic ductile damage. Comput. Methods Appl. Mech. Eng. 360, 112717 (2020). https://doi.org/10.1016/j.cma.2019.112717

    Article  MathSciNet  MATH  ADS  Google Scholar 

  49. Li, J.: A micromechanics-based strain gradient damage model for fracture prediction of brittle materials - Part I: homogenization methodology and constitutive relations. Int. J. Solids Struct. 48, 3336–3345 (2011). https://doi.org/10.1016/j.ijsolstr.2011.08.007

  50. Liu, X., Hu, G.: Inclusion problem of microstretch continuum. Int. J. Eng. Sci. 42, 849–860 (2003)

    Article  Google Scholar 

  51. Liu, Y., Zhang, X.: Metamaterials: a new frontier of science and technology. Chem. Soc. Rev. 40, 2494 (2011)

    Article  Google Scholar 

  52. Mandel, J.: Contribution théorique à l’étude de l’écrouissage et des lois de l’écoulement plastique, In: Applied Mechanics. Springer, Berlin, pp. 502–509. https://doi.org/10.1007/978-3-662-29364-5_67 (1966)

  53. Maugin, G.A.: Thermomechanics of Nonlinear Irreversible Behaviors. World Scientific, River Edge (1999)

    Book  MATH  Google Scholar 

  54. Maugin, G.A.: Generalized continuum mechanics: What do we mean by that? pp. 3–13. https://doi.org/10.1007/978-1-4419-5695-8_1 (2010)

  55. Maurice, G., Ganghoffer, J.F., Rahali, Y.: Second gradient homogenization of multilayered composites based on the method of oscillating functions. Math. Mech. Solids (2018). https://doi.org/10.1177/1081286518820081

    Article  MATH  Google Scholar 

  56. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964). https://doi.org/10.1007/BF00248490

    Article  MathSciNet  MATH  Google Scholar 

  57. Misra, A., Nejadsadeghi, N.: Longitudinal and transverse elastic waves in 1D granular materials modeled as micromorphic continua. Wave Motion 90, 175–195 (2019). https://doi.org/10.1016/j.wavemoti.2019.05.005

    Article  MathSciNet  MATH  ADS  Google Scholar 

  58. Monchiet, V., Auffray, N., Yvonnet, J.: Strain-gradient homogenization: A bridge between the asymptotic expansion and quadratic boundary condition methods. Mech. Mater. 143, 103309 (2020). https://doi.org/10.1016/j.mechmat.2019.103309

    Article  Google Scholar 

  59. Rokoš, O., Ameen, M.M., Peerlings, R.H.J., Geers, M.G.D.: Micromorphic computational homogenization for mechanocal metamaterials with patterning fluctuation fields (2019)

  60. Rokoš, O., Ameen, M.M., Peerlings, R.H.J., Geers, M.G.D.: Extended micromorphic computational homogenization for mechanical metamaterials exhibiting multiple geometric pattern transformations. Extreme Mech. Lett. 37, 100708 (2020). https://doi.org/10.1016/j.eml.2020.100708

    Article  Google Scholar 

  61. Rokoš, Ondřej, Zeman, J., Doškář, M., Krysl, P.: Reduced integration schemes in micromorphic computational homogenization of elastomeric mechanical metamaterials. Adv. Model. Simul. Eng. Sci. 7, 19 (2020). https://doi.org/10.1186/s40323-020-00152-7

  62. Ryś, M., Forest, S., Petryk, H.: A micromorphic crystal plasticity model with the gradient-enhanced incremental hardening law. Int. J. Plast 128, 102655 (2020). https://doi.org/10.1016/j.ijplas.2019.102655

    Article  Google Scholar 

  63. Forest, S.: Mechanics of generalized continua: construction by homogenization. 8, 39–48 (1998)

    ADS  Google Scholar 

  64. Smyshlyaev, V.P., Cherednichenko, K.D.: On rigorous derivation of strain gradient effects in the overall behaviour of periodic heterogeneous media. J. Mech. Phys. Solids 48, 1325–1357 (2000). https://doi.org/10.1016/S0022-5096(99)00090-3

    Article  MathSciNet  MATH  ADS  Google Scholar 

  65. Suhubl, E.S., Eringen, A.C.: Nonlinear theory of micro-elastic solids-II. Int. J. Eng. Sci. 2, 389–404 (1964). https://doi.org/10.1016/0020-7225(64)90017-5

    Article  MathSciNet  Google Scholar 

  66. Tran, T.-H., Monchiet, V., Bonnet, G.: A micromechanics-based approach for the derivation of constitutive elastic coefficients of strain-gradient mediaTra. Int. J. Solids Struct. 49, 783–792 (2012). https://doi.org/10.1016/j.ijsolstr.2011.11.017

    Article  Google Scholar 

  67. Trinh, D.K.: Méthodes d’homogénéisation d’ordre supérieur pour les matériaux architecturés. Thèse de doctorat de l’Ecole Nationale Supérieure des Mines de Paris (2011)

  68. Trinh, D.K., Janicke, R., Auffray, N., Diebels, S., Forest, S.: Evaluation of generalized continuum substitution models for heterogeneous materials. Int. J. Multiscale Comput. Eng. 10, 527–549 (2012). https://doi.org/10.1615/IntJMultCompEng.2012003105

    Article  Google Scholar 

  69. von Hoegen, M., Skatulla, S., Schröder, J.: A generalized micromorphic approach accounting for variation and dispersion of preferred material directions. Comput. Struct. 232, 105888 (2020). https://doi.org/10.1016/j.compstruc.2017.11.013

    Article  Google Scholar 

  70. Wood, B.D.: Technical note: revisiting the geometric theorems for volume averaging. Adv. Water Resour. 62, 340–352 (2013). https://doi.org/10.1016/j.advwatres.2013.08.012

    Article  ADS  Google Scholar 

  71. Xun, F., Hu, G., Huang, Z.: Size-dependence of overall in-plane plasticity for fiber composites. Int. J. Solids Struct., 4113-4730 (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Ganghoffer.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: determination of the microscopic displacement field for the effective micromorphic continuum

The micro displacement field in Eq. (50) incorporates five unknown coefficients that can be determined from the definitions of Eqs (35)–(37), and (5), and by recoursing to the averaging theorem together with the symmetry properties of the tensors (for centrosymmetric unit cells, \(\left\langle {{\varvec{\underline{\upxi }}}^{n}} \right\rangle _{Y} \) is equal to zero for odd values of the exponent n):

$$\begin{aligned}{} & {} U_{i} \left( {\mathrm{\textbf{x}}} \right) =A_{i} +\frac{1}{2}C_{ijk} \left( {\mathrm{\textbf{x}}} \right) G_{jk} +\frac{1}{4}E_{ijklm} \left( {\mathrm{\textbf{x}}} \right) \left( {G_{4} } \right) _{jklm} \end{aligned}$$
(A 1)
$$\begin{aligned}{} & {} H_{ij}:=\left\langle {u_{i,j} } \right\rangle _{Y} =B_{ij} \left( {\mathrm{\textbf{x}}} \right) +\frac{1}{3}D_{imkl} \left( {\mathrm{\textbf{x}}} \right) \left[ {G_{kl} \left( {\textrm{I}_{2} } \right) _{mj} +G_{km} \left( {\textrm{I}_{2} } \right) _{lj} +G_{lm} \left( {\textrm{I}_{2} } \right) _{kj} } \right] \end{aligned}$$
(A 2)
$$\begin{aligned}{} & {} H_{ij} +\chi _{ij} =\left\langle {u_{i} \xi _{p} } \right\rangle _{Y} G_{pj}^{-1} =B_{ij} \left( {\mathrm{\textbf{x}}} \right) +\frac{1}{3}D_{inkl} \left( {\mathrm{\textbf{x}}} \right) \left( {G_{4} } \right) _{nklp} G_{pj}^{-1} \end{aligned}$$
(A 3)
$$\begin{aligned}{} & {} \begin{array}{l} \textrm{K}_{ijk} =2\left[ {\left\langle {u_{i} \xi _{p} \xi _{q} } \right\rangle _{Y} -\left\langle {u_{i} } \right\rangle _{Y} G_{pq} } \right] \left( {\left( {G_{4} } \right) _{pqjk} -G_{pq} G_{jk} } \right) ^{-1} \\ \qquad \quad =C_{ijk} \left( {\mathrm{\textbf{x}}} \right) +\frac{1}{2}E_{irlmn} \left( {\mathrm{\textbf{x}}} \right) \left[ {\left( {G_{6} } \right) _{rlmnpq} -\left( {G_{4} } \right) _{rlmn} G_{pq} } \right] \left( {\left( {G_{4} } \right) _{pqjk} -G_{pq} G_{jk} } \right) ^{-1} \\ \end{array} \end{aligned}$$
(A 4)
$$\begin{aligned}{} & {} \begin{array}{l} \mathop {\textbf{K}}\limits _{\simeq }={grad}_{{x}} {\mathop {\varvec{\chi }}\limits _{\thicksim }}=\left\langle {grad_{{y}} \left( {{{{{\underline{\varvec{u}}}}}}\otimes {\varvec{\underline{\upxi }}}} \right) } \right\rangle _{Y}.{{\mathop {\textbf{G}}\limits _{\thicksim }}}^{-1} -\left\langle {grad_{{y}} grad_{{y}} {{{{\underline{\varvec{u}}}}}}} \right\rangle _{Y} \\ K_{ijk} =U_{i} G_{jk}^{-1} -\frac{1}{4}E_{irlmn} \left[ {\begin{array}{l} G_{mn} \left( {\textrm{I}_{2} } \right) _{jr} \left( {\textrm{I}_{2} } \right) _{lk} +G_{\ln } \left( {\textrm{I}_{2} } \right) _{jr} \left( {\textrm{I}_{2} } \right) _{mk} +G_{ml} \left( {\textrm{I}_{2} } \right) _{jr} \left( {\textrm{I}_{2} } \right) _{nk} +G_{mn} \left( {\textrm{I}_{2} } \right) _{lj} \left( {\textrm{I}_{2} } \right) _{rk} + \\ G_{rn} \left( {\textrm{I}_{2} } \right) _{lj} \left( {\textrm{I}_{2} } \right) _{mk} +G_{rm} \left( {\textrm{I}_{2} } \right) _{lj} \left( {\textrm{I}_{2} } \right) _{nk} +G_{\ln } \left( {\textrm{I}_{2} } \right) _{mj} \left( {\textrm{I}_{2} } \right) _{rk} +G_{rn} \left( {\textrm{I}_{2} } \right) _{mj} \left( {\textrm{I}_{2} } \right) _{lk} + \\ G_{rl} \left( {\textrm{I}_{2} } \right) _{mj} \left( {\textrm{I}_{2} } \right) _{nk} +G_{lm} \left( {\textrm{I}_{2} } \right) _{nj} \left( {\textrm{I}_{2} } \right) _{rk} +G_{rm} \left( {\textrm{I}_{2} } \right) _{nj} \left( {\textrm{I}_{2} } \right) _{lk} +G_{rl} \left( {\textrm{I}_{2} } \right) _{nj} \left( {\textrm{I}_{2} } \right) _{mk} - \\ \left[ {\left( {G_{4} } \right) _{rlmp} \left( {\textrm{I}_{2} } \right) _{nk} +\left( {G_{4} } \right) _{rnlp} \left( {\textrm{I}_{2} } \right) _{mk} +\left( {G_{4} } \right) _{rmnp} \left( {\textrm{I}_{2} } \right) _{lk} +\left( {G_{4} } \right) _{lmnp} \left( {\textrm{I}_{2} } \right) _{rk} } \right] G_{pj}^{-1} \\ \end{array}} \right] \quad \\ \Rightarrow E_{irlmn} T_{rlmnjk}^{6} =4\left( {U_{i} G_{jk}^{-1} -K_{ijk} } \right) \\ \end{array} \end{aligned}$$
(A 5)

In Eq. (A 1), the first coefficient should be a true constant (independent of the macroscopic coordinate), so by eliminating macroscopic rigid body motions, it is selected to be nil, \(A_{i} \left( {\mathrm{\textbf{x}}} \right) =0\).

It should be noted that the second moment of area tensor \({{\mathop {\textbf{G}}\limits _{\thicksim }}}\) is a diagonal matrix (for a square) [11] which can be written as

$$\begin{aligned} G_{pj} =G_{2}^{0} \left( {\textrm{I}_{2} } \right) _{pj} \end{aligned}$$
(A 6)

where \(G_{2}^{0} \) is a constant depending on the unit cell shape.

Subtracting Eq. (A 2) from Eq. (A 3), leads to the evaluation of the coefficient \({\mathop {\textbf{e}}\limits _{\thicksim }}\) (a fourth-order tensor) as

$$\begin{aligned} \chi _{ij} \left( {\mathrm{\textbf{x}}} \right) =\frac{1}{3}D_{iklm} \left( {\mathrm{\textbf{x}}} \right) \left[ {\left( {G_{2}^{0} } \right) ^{-1}\left( {G_{4} } \right) _{klmq} -G_{kl} \left( {\textrm{I}_{2} } \right) _{mq} -G_{km} \left( {\textrm{I}_{2} } \right) _{lq} -G_{lm} \left( {\textrm{I}_{2} } \right) _{kq} } \right] \end{aligned}$$
(A 7)

Implementing the expression in Eq. (A 6), the coefficient \(D_{inkl} \) can be written as

$$\begin{aligned} D_{iklm} \left( {\mathrm{\textbf{x}}} \right) =3\chi _{iq} \left( {\mathrm{\textbf{x}}} \right) \left[ {\left( {G_{2}^{0} } \right) ^{-1}\left( {G_{4} } \right) _{klmq} -G_{kl} \left( {\textrm{I}_{2} } \right) _{mq} -G_{km} \left( {\textrm{I}_{2} } \right) _{lq} -G_{lm} \left( {\textrm{I}_{2} } \right) _{kq} } \right] ^{-1} \end{aligned}$$
(A 8)

The previous relation has the following tensor format

$$\begin{aligned} {\mathop {\textbf{D}}\limits _{\approx }}\left( {\mathrm{\textbf{x}}} \right) =3{\mathop {\varvec{\chi }}\limits _{\thicksim }}\left( {\mathrm{\textbf{x}}} \right) \cdot {\mathop {\mathbf {\Upsilon }}\limits _{\approx }} \end{aligned}$$
(A 9)

In Eq. (A 9), \({\mathop {\mathbf {\Upsilon }}\limits _{\approx }} \) is the fourth-order tensor of the higher-order moments of unit cell area, which is defined as

$$\begin{aligned} \Upsilon _{klmq}:=\left[ {\left( {G_{2}^{0} } \right) ^{-1}\left( {G_{4} } \right) _{klmq} -G_{kl} \left( {\textrm{I}_{2} } \right) _{mq} -G_{km} \left( {\textrm{I}_{2} } \right) _{lq} -G_{lm} \left( {\textrm{I}_{2} } \right) _{kq} } \right] ^{-1} \end{aligned}$$

By substituting Eq. (A 9) into Eq. (A 2), the coefficient \({\mathop {\textbf{B}}\limits _{\thicksim }}\) expresses as

$$\begin{aligned} \begin{array}{l} B_{ij} \left( {\mathrm{\textbf{x}}} \right) =H_{ij} \left( {\mathrm{\textbf{x}}} \right) -\chi _{iq} \left( {\mathrm{\textbf{x}}} \right) \left[ {\left( {G^{0}} \right) ^{-1}\left( {G_{4} } \right) _{klmq} -G_{kl} \left( {\textrm{I}_{2} } \right) _{mq} -G_{km} \left( {\textrm{I}_{2} } \right) _{lq} -G_{lm} \left( {\textrm{I}_{2} } \right) _{kq} } \right] ^{-1}. \\ \left[ {G_{kl} \left( {\textrm{I}_{2} } \right) _{mj} +G_{km} \left( {\textrm{I}_{2} } \right) _{lj} +G_{lm} \left( {\textrm{I}_{2} } \right) _{kj} } \right] \\ \end{array} \end{aligned}$$
(A 10)

which receives the following tensor format

$$\begin{aligned} {\mathop {\textbf{B}}\limits _{\thicksim }}\left( {\mathrm{\textbf{x}}} \right) =\mathop {\textbf{H}}\limits _{\thicksim }\left( {\mathrm{\textbf{x}}} \right) -{\mathop {\varvec{\chi }}\limits _{\thicksim }}\left( {\mathrm{\textbf{x}}} \right) \cdot {\mathop {\mathbf {\Gamma }}\limits _{\thicksim }} \end{aligned}$$
(A 11)

with the second-order tensor \({\mathop {\mathbf {\Gamma }}\limits _{\thicksim }}\) defined in index format as

$$\begin{aligned} \Gamma _{qj}:=\left[ {\left( {G^{0}} \right) ^{-1}\left( {G_{4} } \right) _{klmq} -G_{kl} \left( {\textrm{I}_{2} } \right) _{mq} -G_{km} \left( {\textrm{I}_{2} } \right) _{lq} -G_{lm} \left( {\textrm{I}_{2} } \right) _{kq} } \right] ^{-1}\left[ {G_{kl} \left( {\textrm{I}_{2} } \right) _{mj} +G_{km} \left( {\textrm{I}_{2} } \right) _{lj} +G_{lm} \left( {\textrm{I}_{2} } \right) _{kj} } \right] \end{aligned}$$

To facilitate the calculation of the remaining coefficients, the left-hand side in next Eq. (A 12) can be simplified:

$$\begin{aligned} \left( {\left( {G_{4} } \right) _{pqjk} -G_{pq} G_{jk} } \right) ^{-1}G_{jk} =G_{4}^{0} \left( {\textrm{I}_{2} } \right) _{pq} \end{aligned}$$
(A 12)

where \(G_{4}^{0} \) is a constant related to the fourth and second moment of areas. Using Eqs. (A 1), (A 5), we obtain:

$$\begin{aligned} \begin{array}{l} E_{ipqlm} T_{pqlmjk}^{6} =2C_{ipq} \left( {\mathrm{\textbf{x}}} \right) G_{pq} G_{jk}^{-1} +E_{ipqlm} \left( {\mathrm{\textbf{x}}} \right) \left( {G_{4} } \right) _{pqlm} G_{jk}^{-1} -K_{ijk} \\ \Rightarrow E_{ipqlm} \left( {T_{pqlmjk}^{6} -\left( {G_{4} } \right) _{pqlm} G_{jk}^{-1} } \right) =2C_{ipq} \left( {\mathrm{\textbf{x}}} \right) G_{pq} G_{jk}^{-1} -K_{ijk} \\ T_{rlmnjk}^{6} =\left[ {\begin{array}{l} G_{mn} \left( {\textrm{I}_{2} } \right) _{jr} \left( {\textrm{I}_{2} } \right) _{lk} +G_{\ln } \left( {\textrm{I}_{2} } \right) _{jr} \left( {\textrm{I}_{2} } \right) _{mk} +G_{ml} \left( {\textrm{I}_{2} } \right) _{jr} \left( {\textrm{I}_{2} } \right) _{nk} +G_{mn} \left( {\textrm{I}_{2} } \right) _{lj} \left( {\textrm{I}_{2} } \right) _{rk} + \\ G_{rn} \left( {\textrm{I}_{2} } \right) _{lj} \left( {\textrm{I}_{2} } \right) _{mk} +G_{rm} \left( {\textrm{I}_{2} } \right) _{lj} \left( {\textrm{I}_{2} } \right) _{nk} +G_{\ln } \left( {\textrm{I}_{2} } \right) _{mj} \left( {\textrm{I}_{2} } \right) _{rk} +G_{rn} \left( {\textrm{I}_{2} } \right) _{mj} \left( {\textrm{I}_{2} } \right) _{lk} + \\ G_{rl} \left( {\textrm{I}_{2} } \right) _{mj} \left( {\textrm{I}_{2} } \right) _{nk} +G_{lm} \left( {\textrm{I}_{2} } \right) _{nj} \left( {\textrm{I}_{2} } \right) _{rk} +G_{rm} \left( {\textrm{I}_{2} } \right) _{nj} \left( {\textrm{I}_{2} } \right) _{lk} +G_{rl} \left( {\textrm{I}_{2} } \right) _{nj} \left( {\textrm{I}_{2} } \right) _{mk} - \\ \left[ {\left( {G_{4} } \right) _{rlmp} \left( {\textrm{I}_{2} } \right) _{nk} +\left( {G_{4} } \right) _{rnlp} \left( {\textrm{I}_{2} } \right) _{mk} +\left( {G_{4} } \right) _{rmnp} \left( {\textrm{I}_{2} } \right) _{lk} +\left( {G_{4} } \right) _{lmnp} \left( {\textrm{I}_{2} } \right) _{rk} } \right] G_{pj}^{-1} \\ \end{array}} \right] \\ \end{array} \end{aligned}$$
(A 13)

Multiplying Eqs. (A 4) and (A 5) by \(G_{jk} \) and using expression of \(U_{i} \left( {\mathrm{\textbf{x}}} \right) \) from Eq. (A1) assuming no rigid body motion delivers the algebraic system:

$$\begin{aligned}{} & {} \left| {\begin{array}{l} E_{irlmn} T_{rlmnjk}^{6} G_{jk} =4\left( {C_{ijk} G_{jk} +\frac{1}{2}E_{irlmn} \left( {G_{4} } \right) _{rlmn} -K_{ijk} G_{jk} } \right) \\ 4\textrm{K}_{ijk} G_{jk} =4C_{ijk} G_{jk} +2E_{irlmn} \left( {\mathrm{\textbf{x}}} \right) \left[ {\left( {G_{6} } \right) _{rlmnpq} -\left( {G_{4} } \right) _{rlmn} G_{pq} } \right] \left( {\left( {G_{4} } \right) _{pqjk} -G_{pq} G_{jk} } \right) ^{-1}G_{jk} \\ \end{array}} \right. \nonumber \\{} & {} \Rightarrow 3\textrm{K}_{ijk} G_{jk} =E_{irlmn} \left\{ \left[ {\left( {G_{6} } \right) _{rlmnpq} -\left( {G_{4} } \right) _{rlmn} G_{pq} } \right] \left( {\left( {G_{4} } \right) _{pqjk} -G_{pq} G_{jk} } \right) ^{-1}G_{jk}\right. \nonumber \\{} & {} \left. +T_{rlmnjk}^{6} G_{jk} -\frac{1}{2}\left( {G_{4} } \right) _{rlmn} \right\} \nonumber \\{} & {} \left| {\begin{array}{l} G_{jk} =G_{2}^{0} \left( {\textrm{I}_{2} } \right) _{jk} \\ \left( {\left( {G_{4} } \right) _{pqjk} -G_{pq} G_{jk} } \right) ^{-1}G_{jk} =G_{4}^{0} \left( {\textrm{I}_{2} } \right) _{pq} \\ \end{array}} \right. \nonumber \\{} & {} \Rightarrow 3G_{2}^{0} \textrm{K}_{ijj} =E_{irlmn} \left\{ \left[ {\left( {G_{6} } \right) _{rlmnpp} -2G_{2}^{0} \left( {G_{4} } \right) _{rlmn} } \right] G_{4}^{0} \right. \nonumber \\{} & {} \left. +T_{rlmnjk}^{6} G_{jk} -\frac{1}{2}\left( {G_{4} } \right) _{rlmn} \right\} \nonumber \\{} & {} T_{rlmnjk}^{6} G_{jk} =\left[ {\begin{array}{l} 4G_{mn} G_{rl} +4G_{\ln } G_{rm} +4G_{ml} G_{rn} \\ -\left[ {\left( {G_{4} } \right) _{rlmp} \delta _{pn} +\left( {G_{4} } \right) _{rnlp} \delta _{pm} +\left( {G_{4} } \right) _{rmnp} \delta _{pl} +\left( {G_{4} } \right) _{lmnp} \delta _{pr} } \right] \\ \end{array}} \right] \nonumber \\{} & {} =\left[ {4G_{mn} G_{rl} +4G_{\ln } G_{rm} +4G_{ml} G_{rn} -\left[ {\left( {G_{4} } \right) _{rlmn} +\left( {G_{4} } \right) _{rnlm} +\left( {G_{4} } \right) _{rmnl} +\left( {G_{4} } \right) _{lmnr} } \right] } \right] \nonumber \\{} & {} \Rightarrow T_{rlmnjk}^{6} G_{jk} =T_{rlmn}^{4} \nonumber \\{} & {} \Rightarrow 3G_{2}^{0} \textrm{K}_{itt} =E_{irlmn} \left\{ {\left[ {\left( {G_{6} } \right) _{rlmnpp} -2G_{2}^{0} \left( {G_{4} } \right) _{rlmn} } \right] G_{4}^{0} +T_{rlmn}^{4} -\frac{1}{2}\left( {G_{4} } \right) _{rlmn} } \right\} \equiv E_{irlmn} \Omega _{rlmn} \nonumber \\{} & {} \Rightarrow E_{irlmn} =3G_{2}^{0} \textrm{K}_{itt} \left( {\Omega ^{-1}} \right) _{rlmn} \end{aligned}$$
(A 14)

Inserting the last relation into Eq. (A 4) leads to

$$\begin{aligned} \begin{array}{l} C_{ijk} \left( {\mathrm{\textbf{x}}} \right) =\textrm{K}_{ijk} -\frac{3}{2}G_{2}^{0} \textrm{K}_{itt} \left( {\mathrm{\textbf{x}}} \right) P_{jk} \\ P_{jk}:=\left( {\Omega ^{-1}} \right) _{rlmn} \left[ {\left( {G_{6} } \right) _{rlmnpq} -\left( {G_{4} } \right) _{rlmn} G_{pq} } \right] \left( {\left( {G_{4} } \right) _{pqjk} -G_{pq} G_{jk} } \right) ^{-1} \\ \end{array} \end{aligned}$$
(A 15)

Substituting the coefficients \({\mathop {\textbf{B}}\limits _{\thicksim }}\), \({\mathop {\textbf{C}}\limits _{\simeq }}\), \({\mathop {\textbf{D}}\limits _{\thickapprox }}\), and \({\mathop {\textbf{E}}\limits _{\approxeq }}\) into the previous Eq. (50) gives the total homogenous microscopic displacement as the following fourth-order polynomial expression of the relative microscopic position, expressed successively in the zoomed domain and physical domain versus the small-scale parameter for this last expression:

$$\begin{aligned} u_{i}^{\hom } \left( {{\varvec{\upxi }},\mathrm{\textbf{x}}} \right){} & {} =\left( {H_{ij} -\chi _{ip} \left( {\mathrm{\textbf{x}}} \right) \varvec{\Gamma }_{pj} } \right) \xi _{j} +\frac{1}{2}\left\{ {{\textbf{K}}_{ijk} -\frac{3}{2}G_{2}^{0} P_{jk} {\textbf{K}}_{itt} \left( {\mathrm{\textbf{x}}} \right) } \right\} \xi _{j} \xi _{k} +\chi _{ip} \left( {\mathrm{\textbf{x}}} \right) \varvec{\Upsilon }_{pjkl} \xi _{j} \xi _{k} \xi _{l} \nonumber \\{} & {} \quad +\frac{3}{4}G_{2}^{0} {\textbf{K}}_{itt} \left( {\mathrm{\textbf{x}}} \right) \left( {{\varvec{\Omega }}^{-1}} \right) _{jklm} \xi _{j} \xi _{k} \xi _{l} \xi _{m} \text{ in } \text{ non-dimensional } \text{ domain } \nonumber \\ \Rightarrow u_{i}^{\hom } \left( {{\varvec{\upxi }},\mathrm{\textbf{x}}} \right){} & {} =\left( {H_{ij} -\chi _{ip} \left( {\mathrm{\textbf{x}}} \right) \varvec{\Gamma }_{pj} } \right) \varepsilon \xi _{j} +\frac{1}{2}\left\{ {{\textbf{K}}_{ijk} -\frac{3}{2}G_{2}^{0} P_{jk} {\textbf{K}}_{itt} \left( {\mathrm{\textbf{x}}} \right) } \right\} \varepsilon ^{2}\xi _{j} \xi _{k} +\chi _{ip} \left( {\mathrm{\textbf{x}}} \right) \varvec{\Upsilon }_{pjkl} \varepsilon ^{3}\xi _{j} \xi _{k} \xi _{l} \nonumber \\{} & {} \quad +\frac{3}{4}G_{2}^{0} {\textbf{K}}_{itt} \left( {\mathrm{\textbf{x}}} \right) \left( {{\varvec{\Omega }}^{-1}} \right) _{jklm} \varepsilon ^{4}\xi _{j} \xi _{k} \xi _{l} \xi _{m} \text{ in } \text{ physical } \text{ domain } \end{aligned}$$
(A 16)

The displacement term depending on the micro deformation is odd in the micro position. Thus, the stress will be an even function of the micro deformation, which justifies a posteriori the assumption made in section 2.

Appendix B: derivation of a closed form solution for the double shear problem

The boundary value problem to be solved for the effective micromorphic continuum includes the balance of linear momentum and the constitutive law written in Eq. (56), which specializes in the case of centrosymmetric microstructures and in the absence of body forces at the microlevel to:

$$\begin{aligned} \begin{array}{l} \left| {\begin{array}{l} {\textrm{div}}_{\textrm{x}} {\mathop {\varvec{\Sigma }}\limits _{\thicksim }}=\mathrm{\textbf{0}} \\ \left( {{\mathop {\varvec{\Sigma }}\limits _{\thicksim }}-{\mathop {\textbf{s}}\limits _{\thicksim }}} \right) +{\textrm{div}}_{\textrm{x}} {\mathop {\textbf{s}}\limits _{\simeq }}=0 \\ \end{array}} \right. \\ \left| {\begin{array}{l} {\mathop {\varvec{\Sigma }}\limits _{\thicksim }}={\mathop {\textbf{C}}\limits _{\thickapprox }}^{\hom }:\mathop {\textbf{H}}\limits _{\thicksim } \\ {\mathop {\textbf{s}}\limits _{\thicksim }}={\mathop {\textbf{H}}\limits _{\approx }}^{\hom }:{\mathop {\varvec{\chi }}\limits _{\thicksim }} \\ {\mathop {\textbf{s}}\limits _{\simeq }}={{\mathop {\textbf{K}}\limits _{\mathop {\thickapprox }\limits _{\thicksim }}}}^{\hom }\mathop {\textbf{K}}\limits _{\simeq } \\ \end{array}} \right. \\ \end{array} \end{aligned}$$
(B1)

The micromorphic constitutive law writes in full generality for an orthotropic material symmetry:

$$\begin{aligned} \left( {{\begin{array}{*{20}c} {{\textrm{S}}_{111} } \\ {{\textrm{S}}_{122} } \\ {{\textrm{S}}_{212} } \\ {{\textrm{S}}_{112} } \\ {{\textrm{S}}_{112} } \\ {{\textrm{S}}_{121} } \\ {{\textrm{S}}_{211} } \\ {{\textrm{S}}_{222} } \\ \end{array} }} \right) =\left( {{\begin{array}{*{20}c} {{\textrm{K}}_{11}^{\hom } } &{} {{\textrm{K}}_{12}^{\hom } } &{} {{\textrm{K}}_{13}^{\hom } } &{} {{\textrm{K}}_{14}^{\hom } } &{} &{} &{} &{} \\ {{\textrm{K}}_{12}^{\hom } } &{} {{\textrm{K}}_{22}^{\hom } } &{} {{\textrm{K}}_{24}^{\hom } } &{} {{\textrm{K}}_{24}^{\hom } } &{} &{} &{} &{} \\ {{\textrm{K}}_{13}^{\hom } } &{} {{\textrm{K}}_{23}^{\hom } } &{} {{\textrm{K}}_{33}^{\hom } } &{} {{\textrm{K}}_{34}^{\hom } } &{} &{} &{} &{} \\ {{\textrm{K}}_{14}^{\hom } } &{} {{\textrm{K}}_{24}^{\hom } } &{} {{\textrm{K}}_{34}^{\hom } } &{} {{\textrm{K}}_{44}^{\hom } } &{} &{} &{} &{} \\ &{} &{} &{} &{} {{\textrm{K}}_{55}^{\hom } } &{} {{\textrm{K}}_{56}^{\hom } } &{} {{\textrm{K}}_{57}^{\hom } } &{} {{\textrm{K}}_{58}^{\hom } } \\ &{} &{} &{} &{} {{\textrm{K}}_{65}^{\hom } } &{} {{\textrm{K}}_{66}^{\hom } } &{} {{\textrm{K}}_{67}^{\hom } } &{} {{\textrm{K}}_{68}^{\hom } } \\ &{} &{} &{} &{} {{\textrm{K}}_{75}^{\hom } } &{} {{\textrm{K}}_{76}^{\hom } } &{} {{\textrm{K}}_{77}^{\hom } } &{} {{\textrm{K}}_{78}^{\hom } } \\ &{} &{} &{} &{} {{\textrm{K}}_{85}^{\hom } } &{} {{\textrm{K}}_{86}^{\hom } } &{} {{\textrm{K}}_{87}^{\hom } } &{} {{\textrm{K}}_{88}^{\hom } } \\ \end{array} }} \right) \left( {{\begin{array}{*{20}c} {{\textrm{K}}_{111} } \\ {{\textrm{K}}_{122} } \\ {{\textrm{K}}_{212} } \\ {{\textrm{K}}_{112} } \\ {{\textrm{K}}_{112} } \\ {{\textrm{K}}_{121} } \\ {{\textrm{K}}_{211} } \\ {{\textrm{K}}_{222} } \\ \end{array} }} \right) \end{aligned}$$
(B2)

The considered BVP has been completely solved in [67] so we indicate the used Ansatz for the displacement and microdeformation and the obtained solution for an orthotropic micromorphic medium. The kinematic variables, the displacement and microdeformation, express versus the sole vetical position as follows:

$$\begin{aligned} \begin{array}{l} \mathrm{\textbf{u}}={\textrm{u}}\left( {\textrm{x}_{2} } \right) \mathrm{\textbf{e}}_{1} \\ {\varvec{\upchi }}={\varvec{\upchi }}\left( {x_{2} } \right) =\chi _{12} \left( {\textrm{x}_{2} } \right) \left( {\mathrm{\textbf{e}}_{1} \otimes \mathrm{\textbf{e}}_{2} +\mathrm{\textbf{e}}_{2} \otimes \mathrm{\textbf{e}}_{1} } \right) \\ \mathrm{\textbf{K}}:={\varvec{\upchi }}\otimes \nabla _{\textrm{X}} =\chi '_{12} \mathrm{\textbf{e}}_{1} \otimes \mathrm{\textbf{e}}_{2} \otimes \mathrm{\textbf{e}}_{2} +\chi '_{21} \mathrm{\textbf{e}}_{1} \otimes \mathrm{\textbf{e}}_{1} \otimes \mathrm{\textbf{e}}_{2} \\ \end{array} \end{aligned}$$
(B3)

In which the prime denotes the derivative with respect to the space variable \({\textrm{x}}_{2} \).

The boundary conditions are those of imposed displacement and clamped higher order kinematic conditions, thus it holds the six constraints:

$$\begin{aligned} \left| {\begin{array}{l} {\textrm{u}}\left( {\textrm{h}} \right) ={\textrm{u}}\left( {-{\textrm{h}}} \right) =\delta /2 \\ \chi _{12} \left( {\pm {\textrm{h}}} \right) =0 \\ \chi _{21} \left( {\pm {\textrm{h}}} \right) =0 \\ \end{array}} \right. \end{aligned}$$
(B4)

According to the kinematic assumptions in Eq. (B3), the constitutive law in Eq. (B1) takes the form

$$\begin{aligned} \left\{ {\begin{array}{l} \upsigma _{12} =2{\textrm{C}}_{1212} {\textrm{u}}' \\ {\textrm{s}}_{12} ={\textrm{B}}_{1212} \left( {{\textrm{u}}'-\upchi _{12} } \right) +{\textrm{B}}_{1221} \left( {-\upchi _{21} } \right) \\ {\textrm{s}}_{21} ={\textrm{B}}_{2112} \left( {{\textrm{u}}'-\upchi _{12} } \right) +{\textrm{B}}_{2121} \left( {-\upchi _{21} } \right) \\ {\textrm{S}}_{122} ={\textrm{A}}_{22} \upchi '_{12} +{\textrm{A}}_{23} \upchi '_{21} \\ {\textrm{S}}_{212} ={\textrm{A}}_{23} \upchi '_{12} +{\textrm{A}}_{33} \upchi '_{21} \end{array}} \right. \end{aligned}$$
(B5)

The solution for the micromorphic shear deformations have been obtained in [67], and write in terms of hyperbolic functions:

$$\begin{aligned} \left\{ {\begin{array}{l} \chi _{12} \left( {{\textrm{x}}_{2} } \right) =\frac{1}{\upomega _{1} }{\textrm{C}}{ }_{2}\cosh \left( {\upomega _{1} {\textrm{x}}_{2} } \right) +\frac{1}{\upomega _{2} }{\textrm{C}}{ }_{4}\cosh \left( {\upomega _{2} {\textrm{x}}_{2} } \right) +{\textrm{C}}_{9} \\ \chi _{21} \left( {{\textrm{x}}_{2} } \right) =\frac{\tau _{1} }{\upomega _{1} }{\textrm{C}}{ }_{2}\cosh \left( {\upomega _{1} {\textrm{x}}_{2} } \right) +\frac{\tau _{2} }{\upomega _{2} }{\textrm{C}}{ }_{4}\cosh \left( {\upomega _{2} {\textrm{x}}_{2} } \right) \\ u\left( {{\textrm{x}}_{2} } \right) =\frac{\eta _{1} +\eta _{2} \tau _{1} }{\upomega _{1} ^{2}}{\textrm{C}}{ }_{2}\cosh \left( {\upomega _{1} {\textrm{x}}_{2} } \right) +\frac{\eta _{1} +\eta _{2} \tau _{2} }{\upomega _{2}^{2}}{\textrm{C}}{ }_{4}\cosh \left( {\upomega _{2} {\textrm{x}}_{2} } \right) +{\textrm{C}}_{9} {\textrm{x}}_{2} \end{array}} \right. \end{aligned}$$
(B6)

with the constants therein \({\textrm{C}}{ }_{2},{\textrm{C}}{ }_{4},{\textrm{C}}{ }_{9}\) expressing from the three remaining boundary conditions:

$$\begin{aligned} \left| {\begin{array}{l} {\textrm{C}}_{4} =\frac{\delta }{2\left\{ {\frac{\eta _{1} +\eta _{2} \tau _{2} }{\upomega _{2}^{2}}\sinh \left( {\upomega _{2} h} \right) -h\frac{\cosh \left( {\upomega _{2} h} \right) }{\upomega _{2} }-\left( {\frac{\eta _{1} +\eta _{2} \tau _{1} }{\upomega _{1}^{2}}-h\frac{\cosh \left( {\upomega _{1} h} \right) }{\upomega _{1} }} \right) \frac{\tau _{2} }{\upomega _{2} }\sinh \left( {\upomega _{2} h} \right) \frac{\upomega _{1} }{\tau _{1} \cosh \left( {\upomega _{1} h} \right) }} \right\} } \\ {\textrm{C}}_{2} =-\frac{\tau _{2} }{\upomega _{2} }\sinh \left( {\upomega _{2} h} \right) \frac{\upomega _{1} }{\tau _{1} \cosh \left( {\upomega _{1} h} \right) }{\textrm{C}}_{4}, \\ {\textrm{C}}_{9} =-\frac{\cosh \left( {\upomega _{1} h} \right) }{\upomega _{1} }{\textrm{C}}_{2} -\frac{\cosh \left( {\upomega _{2} h} \right) }{\upomega _{2} }{\textrm{C}}_{4} \\ {\textrm{C}}_{5} =\frac{-\upalpha _{1} +\upalpha _{2} \upomega _{1}^{2}}{\upbeta _{1} +\upbeta _{2} \upomega _{1}^{2}}{\textrm{C}}_{1} =\tau _{1} {\textrm{C}}_{1}, {\textrm{C}}_{6} =\frac{-\upalpha _{1} +\upalpha _{2} \upomega _{1}^{2}}{\upbeta _{1} +\upbeta _{2} \upomega _{1}^{2}}{\textrm{C}}_{2} =\tau _{1} {\textrm{C}}_{2} \\ {\textrm{C}}_{7} =\frac{-\upalpha _{1} +\upalpha _{2} \upomega _{1}^{2}}{\upbeta _{1} +\upbeta _{2} \upomega _{1}^{2}}{\textrm{C}}_{3} =\tau _{2} {\textrm{C}}_{3}, {\textrm{C}}_{8} =\frac{-\upalpha _{1} +\upalpha _{2} \upomega _{1}^{2}}{\upbeta _{1} +\upbeta _{2} \upomega _{1}^{2}}{\textrm{C}}_{3} =\tau _{2} {\textrm{C}}_{4} \\ \end{array}} \right. \end{aligned}$$
(B7)

with \(\upomega _{1}^{2},\upomega _{2}^{2}\) therein the solution (in terms of their square) of the characteristic equation

$$\begin{aligned} \begin{array}{l} \upalpha _{1} \left( {\upbeta _{3} -\upbeta _{1} } \right) +\left( {\upalpha _{2} \upbeta _{3} +\upalpha _{1} \upbeta _{4} -\upbeta _{1} \upalpha _{3} -\upalpha _{1} \upbeta _{2} } \right) x+\left( {\upalpha _{2} \upbeta _{4} -\upbeta _{2} \upalpha _{3} } \right) x^{2}=0 \\ \upalpha _{1}:=-\frac{{\textrm{C}}_{1212} }{{\textrm{C}}_{1212} +{\textrm{B}}_{1212} },\upalpha _{2}:=-\frac{{\textrm{A}}_{22} }{{\textrm{B}}_{1212} },\upalpha _{2}:=-\frac{{\textrm{A}}_{23} }{{\textrm{B}}_{2112} } \\ \upbeta _{1}:=\left( {\frac{{\textrm{B}}_{1221} }{{\textrm{C}}_{1212} +{\textrm{B}}_{1212} }-\frac{{\textrm{B}}_{1221} }{{\textrm{B}}_{1212} }} \right) ,\upbeta _{2}:=\frac{{\textrm{A}}_{23} }{{\textrm{B}}_{1212} },\upbeta _{3}:=\left( {\frac{{\textrm{B}}_{1221} }{{\textrm{C}}_{1212} +{\textrm{B}}_{1212} }-\frac{{\textrm{B}}_{2121} }{{\textrm{B}}_{2112} }} \right) ,\upbeta _{4}:=\frac{{\textrm{A}}_{33} }{{\textrm{B}}_{2112} } .\\ \end{array} \end{aligned}$$
(B8)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alavi, S.E., Ganghoffer, J.F., Reda, H. et al. Hierarchy of generalized continua issued from micromorphic medium constructed by homogenization. Continuum Mech. Thermodyn. 35, 2163–2192 (2023). https://doi.org/10.1007/s00161-023-01239-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-023-01239-3

Keywords

Navigation