Skip to main content
Log in

Molecular and Cellular Aspects of the Endothelial–Mesenchymal Transition in Cardiovascular Diseases

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Endothelial cells (ECs), which form the inner surface of the blood vessels, contact the blood, withstand mechanical pressure, and demonstrate heterogeneous reactions to exogenous and endogenous stimuli. ECs have unique properties in accordance with their niches and play an important role in regulating vascular homeostasis. Endothelial cells may undergo a dynamic phenotypic switch in terms of its heterogeneity, which may lead to endothelial dysfunction and a number of associated pathologies. Endothelial–mesenchymal transition (EndMT) is one of the possible molecular and cellular mechanisms of this kind. EndMT is characterized by phenotypic changes in ECs through which endothelial cells acquire new properties, i.e., start producing mesenchymal markers such as alpha-SMA and vimentin, change morphology, and become able to migrate. EndMT is a complex biological process that can be induced by inflammation, hypoxia, or oxidative stress and be involved in pathogenesis of cardiovascular disease. This review describes the key markers, inhibitors, and inducers of endothelial–mesenchymal transition and overall state-of-the-art of EndMT in cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Rodrigues S.F., Granger D.N. 2015. Blood cells and endothelial barrier function. Tissue Barriers3 (1–2), e978720.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kalinin R.E., Suchkov I.A., Krylov A.A., Mzhavanadze N.D., Pshennikov A.S., Solyanik1 N.A., Gerasimov A.A. 2021. Integrated approach to treatment of inoperable patients with critical lower limb ischemia and diabetes mellitus: results and prospects. Eruditio Juvenium9 (4), 559‒572.

    Google Scholar 

  3. Pérez L., Muñoz-Durango N., Riedel C.A., Echeverría C., Kalergis A.M., Cabello-Verrugio C., Simon F. 2017. Endothelial-to-mesenchymal transition: cytokine-mediated pathways that determine endothelial fibrosis under inflammatory conditions. Cytokine Growth Factor Rev33, 41‒54.

    Article  PubMed  Google Scholar 

  4. Kizu A., Medici D., Kalluri R. 2009). Endothelial–mesenchymal transition as a novel mechanism for generating myofibroblasts during diabetic nephropathy. Am. J. Pathol175 (4), 1371‒1373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Souilhol C., Harmsen M.C., Evans P.C., Krenning G. 2018. Endothelial–mesenchymal transition in atherosclerosis. Cardiovascular Res. 114 (4), 565‒577.

    Article  CAS  Google Scholar 

  6. Kokudo T., Suzuki Y., Yoshimatsu Y., Yamazaki T., Watabe T., Miyazono K. 2008. Snail is required for TGFβ-induced endothelial–mesenchymal transition of embryonic stem cell-derived endothelial cells. J. Cell Sci. 121 (20), 3317‒3324.

    Article  CAS  PubMed  Google Scholar 

  7. Kovacic J.C., Dimmeler S., Harvey R.P., Finkel T., Aikawa E., Krenning G., Baker A.H. 2019. Endothelial to mesenchymal transition in cardiovascular disease: JACC state-of-the-art review. J. Am. College Cardiol. 73 (2), 190‒209.

    Article  Google Scholar 

  8. Zhang Y., Zhang M., Xie W., Wan J., Tao X., Liu M., Zhen Y., Lin F., Wu B., Zhai Z., Wang C. 2020. Gremli-n-1 is a key regulator of endothelial-to-mesenchymal transition in human pulmonary artery endothelial cells. Exp. Cell Res. 390 (1), 111941.

    Article  CAS  PubMed  Google Scholar 

  9. Liao D., Sundlov J., Zhu J., Mei H., Hu Y., Newman D.K., Newman P.J. 2022. Atomic level dissection of the platelet endothelial cell adhesion molecule 1 (PECAM-1) homophilic binding interface: implications for endothelial cell barrier function. Arterioscler. Thromb. Vasc. Biol. 42 (2), 193‒204.

    Article  CAS  PubMed  Google Scholar 

  10. Sadler J.E. 1998. Biochemistry and genetics of von Willebrand factor. Annu. Rev. Biochem. 67, 395.

    Article  CAS  PubMed  Google Scholar 

  11. Van Roy F., Berx G. 2008. The cell-cell adhesion molecule E-cadherin. Cell. Mol. Life Sci65 (23), 3756‒3788.

    Article  CAS  PubMed  Google Scholar 

  12. Harris E.S., Nelson W.J. 2010). VE-cadherin: at the front, center, and sides of endothelial cell organization and function. Curr. Opin. Cell Biol. 22 (5), 651‒658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Herrmann H., Hesse M., Reichenzeller M., Aebi U., Magin T.M. 2002. Functional complexity of intermediate filament cytoskeletons: from structure to assembly to gene ablation. Int. Rev. Cytol223, 83‒175.

    Article  Google Scholar 

  14. Colucci-Guyon E., Portier M.M., Dunia I., Paulin D., Pournin S., Babinet C. 1994. Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell79 (4), 679‒694.

    Article  CAS  PubMed  Google Scholar 

  15. Colucci-Guyon E., Giménez Y., Ribotta M., Maurice T., Babinet C., Privat A. 1999. Cerebellar defect and impaired motor coordination in mice lacking vimentin. Glia25 (1), 33‒43.

    Article  CAS  PubMed  Google Scholar 

  16. Eckes B., Colucci-Guyon E., Smola H., Nodder S., Babinet C., Krieg T., Martin P. 2000. Impaired wound healing in embryonic and adult mice lacking vimentin. J. Cell Sci. 113 (13), 2455‒2462.

    Article  CAS  PubMed  Google Scholar 

  17. Henrion D., Terzi F., Matrougui K., Duriez M., Boulanger C.M., Colucci-Guyon E., Babinet C., Briand P., Friedlander G., Poitevin P., Lévy B.I. 1997. Impaired flow-induced dilation in mesenteric resistance arteries from mice lacking vimentin. J. Clin. Invest100 (11), 2909‒2914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Veres-Székely A., Pap D., Sziksz E., Jávorszky E., Rokonay R., Lippai R., Tony K., Fekete A., Tulassay T., Szabo A.J., Vannay Á. 2017. Selective measurement of α smooth muscle actin: why β-actin can not be used as a housekeeping gene when tissue fibrosis occurs. BMC Mol. Biol. 18 (1), 1‒15.

    Article  Google Scholar 

  19. Doherty G.J., McMahon H.T. 2008. Mediation, modulation, and consequences of membrane-cytoskeleton interactions. Annu. Rev. Biophys37 (1), 65‒95.

    Article  CAS  PubMed  Google Scholar 

  20. Samad F., Loskutoff D.J. 1996. Tissue distribution and regulation of plasminogen activator inhibitor-1 in obese mice. Mol. Med. 2 (5), 568‒582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vaughan D.E. 2005. PAI-1 and atherothrombosis. J. Thrombosis Haemostasis. 3 (8), 1879‒1883.

    Article  CAS  Google Scholar 

  22. Rana T., Jiang C., Liu G., Miyata T., Antony V., Thannickal V.J., Liu R.M. 2020. PAI-1 regulation of TGF-β1-induced alveolar type II cell senescence, SASP secretion, and SASP-mediated activation of alveolar macrophages. Am. J. Respir. Cell Mol. Biol62 (3), 319‒330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fukudome K., Esmon C.T. 1994. Identification, cloning, and regulation of a novel endothelial cell protein C/activated protein C receptor. J. Biol. Chem. 269 (42), 26486‒26491.

    Article  CAS  PubMed  Google Scholar 

  24. Wharton K., Derynck R. 2009. TGFβ family signaling: novel insights in development and disease. Development. 136 (22), 3691‒3697.

    Article  CAS  PubMed  Google Scholar 

  25. Farrar E.J., Butcher J.T. 2014. Heterogeneous susceptibility of valve endothelial cells to mesenchymal transformation in response to TNFα. Ann. Biomed. Eng42 (1), 149‒161.

    Article  PubMed  Google Scholar 

  26. Romero L.I., Zhang D.N., Herron G.S., Karasek M.A. 1997). Interleukin-1 induces major phenotypic changes in human skin microvascular endothelial cells. J. Cell. Physiol. 173 (1), 84‒92.

    Article  CAS  PubMed  Google Scholar 

  27. Maleszewska M., Gjaltema R.A., Krenning G., Harmsen M.C. 2015. Enhancer of zeste homolog-2 (EZH2) methyltransferase regulates transgelin/smooth muscle-22α expression in endothelial cells in response to interleukin-1β and transforming growth factor-β2. Cell. Signal. 27 (8), 1589‒1596.

    Article  CAS  PubMed  Google Scholar 

  28. Cho J.G., Lee A., Chang W., Lee M.S., Kim J. 2018. Endothelial to mesenchymal transition represents a key link in the interaction between inflammation and endothelial dysfunction. Front. Immunol. 9, 294.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Good R.B., Gilbane A.J., Trinder S.L., Denton C.P., Coghlan G., Abraham D.J., Holmes A.M. 2015. Endothelial to mesenchymal transition contributes to endothelial dysfunction in pulmonary arterial hypertension. Am. J. Pathol. 185 (7), 1850‒1858.

    Article  CAS  PubMed  Google Scholar 

  30. Lee J.G., Ko M.K., Kay E.P. 2012. Endothelial mesenchymal transformation mediated by IL-1β-induced FGF-2 in corneal endothelial cells. Exp. Eye Res. 95 (1), 35‒39.

    Article  CAS  PubMed  Google Scholar 

  31. Dejana E., Hirschi K.K., Simons M. 2017. The molecular basis of endothelial cell plasticity. Nat. Commun. 8 (1), 1‒11.

    Article  Google Scholar 

  32. Sabbineni H., Verma A., Artham S., Anderson D., Amaka O., Liu F., Narayanan S.P., Somanath P.R. 2019. Pharmacological inhibition of β-catenin prevents EndMT in vitro and vascular remodeling in vivo resulting from endothelial Akt1 suppression. Biochem. Pharmacol. 164, 205‒215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Giordo R., Ahmed Y.M., Allam H., Abusnana S., Pappalardo L., Nasrallah G.K., Mangoni A.A., Pintus G. 2021. EndMT regulation by small RNAs in diabetes-associated fibrotic conditions: potential link with oxidative stress. Front. Cell Dev. Biol. 9, 683594.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Shang J., Zhang Y., Jiang Y., Li Z., Duan Y., Wang L., Xiao J., Zhao Z. 2017. NOD2 promotes endothelial-to-mesenchymal transition of glomerular endothelial cells via MEK/ERK signaling pathway in diabetic nephropathy. Biochem. Biophys. Res. Commun. 484 (2), 435‒441.

    Article  CAS  PubMed  Google Scholar 

  35. Zhao L., Zhao J., Wang X., Chen Z., Peng K., Lu X., Meng L., Liu G., Guan G., Wang F. 2016. Serum response factor induces endothelial–mesenchymal transition in glomerular endothelial cells to aggravate proteinuria in diabetic nephropathy. Physiol. Genomics48 (10), 711‒718.

    Article  CAS  PubMed  Google Scholar 

  36. Ma Z., Zhu L., Liu Y., Wang Z., Yang Y., Chen L., Lu Q. 2017. Lovastatin alleviates endothelial-to-mesenchymal transition in glomeruli via suppression of oxidative stress and TGF-β1 signaling. Front. Pharmacol. 8, 473.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chen P.Y., Qin L., Barnes C., Charisse K., Yi T., Zhang X., Ali R., Medina P.P., Yu J., Slack F.J., Anderson D.J., Kotelianski V., Wang F., Tellides G., Simons M. 2012. FGF regulates TGF-β signaling and endothelial-to-mesenchymal transition via control of let-7 miRNA expression. Cell Rep. 2 (6), 1684‒1696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ichise T., Yoshida N., Ichise H. 2014. FGF2-induced Ras–MAPK signalling maintains lymphatic endothelial cell identity by upregulating endothelial-cell-specific gene expression and suppressing TGFβ signalling through Smad2. J. Cell Sci. 127 (4), 845‒857.

    CAS  PubMed  Google Scholar 

  39. Xu X., Friehs I., Zhong Hu T., Melnychenko I., Tampe B., Alnour F., Iasconr M., Kalluri R., Zeisberg M., del Nido P.J., Zeisberg E.M. 2015. Endocardial fibroelastosis is caused by aberrant endothelial to mesenchymal transition. Circulation Res. 116 (5), 857‒866.

    Article  CAS  PubMed  Google Scholar 

  40. Kanasaki K., Shi S., Kanasaki M., He J., Nagai T., Nakamura Y., Ishidaki Y., Kitada M., Srivastava S.P., Koya D. 2014. Linagliptin-mediated DPP-4 inhibition ameliorates kidney fibrosis in streptozotocin-induced diabetic mice by inhibiting endothelial-to-mesenchymal transition in a therapeutic regimen. Diabetes63 (6), 2120‒2131.

    Article  CAS  PubMed  Google Scholar 

  41. Gao H., Zhang J., Liu T., Shi W. 2011. Rapamycin prevents endothelial cell migration by inhibiting the endothelial-to-mesenchymal transition and matrix metalloproteinase-2 and-9: an in vitro study. Mol. Vision. 17, 3406.

    CAS  Google Scholar 

  42. Cipriani P., Di Benedetto P., Ruscitti P., Capece D., Zazzeroni F., Liakouli V., Pantano I., Berardicurti O., Carubbi F., Pecetti G., Turricchia S., Edoardo Alesse, Iglarz M., Giacomelli R. 2015. The endothelial–mesenchymal transition in systemic sclerosis is induced by endothelin-1 and transforming growth factor-β and may be blocked by macitentan, a dual endothelin-1 receptor antagonist. J. Rheumatol. 42 (10), 1808‒1816.

    Article  CAS  PubMed  Google Scholar 

  43. Guo Y., Li P., Bledsoe G., Yang Z.R., Chao L., Chao J. 2015. Kallistatin inhibits TGF-β-induced endothelial–mesenchymal transition by differential regulation of microRNA-21 and eNOS expression. Exp. Cell Res. 337 (1), 103‒110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen X., Cai J., Zhou X., Chen L., Gong Y., Gao Z., Zhang H., Huang W., Zhou H. 2015. Protective effect of spironolactone on endothelial-to-mesenchymal transition in HUVECs via notch pathway. Cell. Physiol. Biochem. 36 (1), 191‒200.

    Article  PubMed  Google Scholar 

  45. Wylie-Sears J., Levine R.A., Bischoff J. 2014. Losartan inhibits endothelial-to-mesenchymal transformation in mitral valve endothelial cells by blocking transforming growth factor-β-induced phosphorylation of ERK. Biochem. Biophys. Res. Commun. 446 (4), 870‒875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Testai L., Brancaleone V., Flori L., Montanaro R., Calderone V. 2021. Modulation of EndMT by hydrogen sulfide in the prevention of cardiovascular fibrosis. Antioxidants10 (6), 910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lovisa S., Fletcher-Sananikone E., Sugimoto H., Hensel J., Lahiri S., Hertig A., Taburi G., Lawson E., Dewar R., Revuelta I., Kato N., Wu C.J., Bassett J.R.R.L., Putluni N., Zeisberg M., Zeisberg E.M., Lebleu V., Kalluri R. 2020. Endothelial-to-mesenchymal transition compromises vascular integrity to induce Myc-mediated metabolic reprogramming in kidney fibrosis. Sci. Signal. 13 (635), eaaz2597.

  48. Manetti M., Romano E., Rosa I., Guiducci S., Bellando-Randone S., De Paulis A., Ibba-Manneschi L., Matucci-Cerinic M. 2017. Endothelial-to-mesenchymal transition contributes to endothelial dysfunction and dermal fibrosis in systemic sclerosis. Ann. Rheum. Dis76 (5), 924‒934.

    Article  CAS  PubMed  Google Scholar 

  49. Hao Y.M., Yuan H.Q., Ren Z., Qu S.L., Liu L.S., Yin K., Yin K., Fu M., Jiang Z.S. 2019. Endothelial to mesenchymal transition in atherosclerotic vascular remodeling. Clin. Chim. Acta490, 34‒38.

    Article  CAS  PubMed  Google Scholar 

  50. Gorelova A., Berman M., Al Ghouleh I. 2021. Endothelial-to-mesenchymal transition in pulmonary arterial hypertension. Antioxid. Redox Signal34 (12), 891‒914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gurzu S., Kobori L., Fodor D., Jung I. 2019. Epithelial mesenchymal and endothelial mesenchymal transitions in hepatocellular carcinoma: a review. BioMed Res. Int. 2019. 2962580.

    Article  PubMed  PubMed Central  Google Scholar 

  52. van Nieuw Amerongen G.P., van Hinsbergh V.W. 2002). Targets for pharmacological intervention of endothelial hyperpermeability and barrier function. Vasc. Pharmacol. 39 (4‒5), 257‒272.

    Article  CAS  Google Scholar 

  53. Barabutis N., Verin A., Catravas J.D. 2016. Regulation of pulmonary endothelial barrier function by kinases. Am. J. Physiol., Lung Cell. Mol. Physiol. 311 (5), L832‒L845.

    Article  PubMed  Google Scholar 

  54. Davignon J., Ganz P. 2004. Role of endothelial dysfunction in atherosclerosis. Circulation109 (23 Suppl 1), III27–32.

  55. Mudau M., Genis A., Lochner A., Strijdom H. 2012. Endothelial dysfunction: the early predictor of atherosclerosis. Cardiovasc. J. Afr. 23 (4), 222‒231.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Chang J.C., Kou S.J., Lin W.T., Liu C.S. 2010. Regulatory role of mitochondria in oxidative stress and atherosclerosis. World J. Cardiol. 2 (6), 150.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Moonen J.R.A., Lee E.S., Schmidt M., Maleszewska M., Koerts J.A., Brouwer L.A., van Kooter T.G., van Luyn M.J.A., Zeebregts C.J., Krenning G., Harmsen M.C. 2015. Endothelial-to-mesenchymal transition contributes to fibro-proliferative vascular disease and is modulated by fluid shear stress. Cardiovasc. Res. 108 (3), 377‒386.

    Article  CAS  PubMed  Google Scholar 

  58. Ma K.L., Liu J., Ni J., Zhang Y., Lv L.L., Tang R.N., Ni H.F., Ruan X.Z., Liu B.C. 2013. Inflammatory stress exacerbates the progression of cardiac fibrosis in high-fat-fed apolipoprotein E knockout mice via endothelial–mesenchymal transition. Int. J. Med. Sci. 10 (4), 420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Maleszewska M., Moonen J.R.A., Huijkman N., van de Sluis B., Krenning G., Harmsen M.C. 2013. IL‑1β and TGFβ2 synergistically induce endothelial to mesenchymal transition in an NF-κB-dependent manner. Immunobiology218 (4), 443‒454.

    Article  CAS  PubMed  Google Scholar 

  60. Ranchoux B., Tanguay V.F., Perros F. 2020. Endothelial-to-mesenchymal transition in pulmonary hypertension. In Molecular Mechanism of Congenital Heart Disease and Pulmonary Hypertension. Nakanishi T., Baldwin H.S., Fineman J.R., Yamagishi H., Eds. Singapur: Springer, 63‒70.

  61. Pelouch V., Dixon I., Golfman L., Beamish R.E., Dhalla N.S. 1993. Role of extracellular matrix proteins in heart function. Mol. Cell. Biochem. 129 (2), 101‒120.

    Article  CAS  PubMed  Google Scholar 

  62. van Wamel A.J., Ruwhof C., van der Valk-Kokshoorn L.J., Schrier P.I., van der Laarse A. 2002. Stretch-induced paracrine hypertrophic stimuli increase TGF-β1 expression in cardiomyocytes. Mol. Cell. Biochem236 (1), 147‒153.

    Article  CAS  PubMed  Google Scholar 

  63. Al Hattab D., Czubryt M.P. 2017. A primer on current progress in cardiac fibrosis. Canadian J. Physiol. Pharmacol. 95 (10), 1091‒1099.

    Article  CAS  Google Scholar 

  64. Ho Y.Y., Lagares D., Tager A.M., Kapoor M. 2014. Fibrosis—a lethal component of systemic sclerosis. Nat. Rev. Rheumatol. 10 (7), 390‒402.

    Article  CAS  PubMed  Google Scholar 

  65. Kalinin R.E., Suchkov I.A., Mzhavanadze N.D., Korotkova N.V., Klimentova E.A., Povarov V.O. 2021. Nitric oxide metabolites in complications after open reconstructive procedures in patients with peripheral atherosclerosis. Eruditio Juvenium. 9 (3), 407‒414.

    Google Scholar 

  66. Lee E.S., Boldo L.S., Fernandez B.O., Feelisch M., Harmsen M.C. 2017. Suppression of TAK1 pathway by shear stress counteracts the inflammatory endothelial cell phenotype induced by oxidative stress and TGF-β1. Sci. Rep. 7 (1), 1‒14.

    Google Scholar 

  67. Jobling M.F., Mott J.D., Finnegan M.T., Jurukovski V., Erickson A.C., Walian P.J., Taylor S.E., Ledbetter S., Lawrense C.M., Rifkin D.B., Barcellos-Hoff M.H. 2006. Isoform-specific activation of latent transforming growth factor β (LTGF-β) by reactive oxygen species. Radiat. Res166 (6), 839‒848.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Writing this review did not require special funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D. Mzhavanadze.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by M. Batrukova

Abbreviations: SMC, smooth muscle cells; RT-PCR, real-time reverse transcription polymerase chain reaction; EC, endothelial cells; BMP, bone morphogenetic protein; EMT, epithelial-to-mesenchymal transition; EndMT, endothelial–mesenchymal transition; EPCR, endothelial cell protein C receptor; FGF, fibroblast growth factor; ICAM-1, intercellular adhesion molecule 1; IL, interleukin; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; PAI-1, plasminogen activator inhibitor-1; PECAM-1, platelet endothelial cell adhesion molecule; SM22α, smooth muscle 22α; TGF-β, transforming growth factor-β; TNF-α, tumor necrosis factor α; VCAM-1, vascular cell adhesion molecule 1; α-SMA, α-smooth muscle actin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strelnikova, E.A., Kalinin, R.E., Suchkov, I.A. et al. Molecular and Cellular Aspects of the Endothelial–Mesenchymal Transition in Cardiovascular Diseases. Mol Biol 57, 563–571 (2023). https://doi.org/10.1134/S0026893323030111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893323030111

Keywords:

Navigation