Skip to main content
Log in

Assembly and Disassembly of the Nuclear Pore Complex: A View from the Structural Side

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—Nucleocytoplasmic exchange in the cell occurs through the nuclear pore complexes (NPCs). NPCs are large multiprotein complexes with octagonal symmetry about their axis and imperfect mirror symmetry about a plane parallel with the nuclear envelop (NE). NPC fuses the inner and outer nuclear membranes and opens up a channel between nucleus and cytoplasm. NPC is built of nucleoporins. Each nucleoporin occurs in at least eight copies per NPC. Inside the NPC a permeability barrier forms by which NPCs can provide fast and selectable transport of molecules from one side of the nuclear membrane to the other. NPC architecture is based on hierarchical principle of organization. Nucleoporins are integrated into complexes that oligomerizes into bigger octomeric high-order structures. These structures are the main components of NPCs. In the first part of this work, the main attention is paid to NPC structure and nucleoporin properties. The second part is dedicated to mechanisms of NPC assembly and disassembly at different stages of the cell cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Beck M., Hurt E. 2017. The nuclear pore complex: understanding its function through structural insight. Nat. Rev. Mol. Cell. Biol. 18 (2), 73‒89.

    Article  CAS  PubMed  Google Scholar 

  2. Hampoelz B., Andres-Pons A., Kastritis P., Beck M. 2019. Structure and assembly of the nuclear pore complex. Annu. Rev. Biophys. 48, 515‒536.

    Article  CAS  PubMed  Google Scholar 

  3. Allegretti M., Zimmerli C.E., Rantos V., Wilfling F., Ronchi P., Fung H.K.H., Lee C.W., Hagen W., Turoňová B., Karius K., Börmel M., Zhang X., Müller C.W., Schwab Y., Mahamid J., Pfander B., Kosinski J., Beck M. 2020. In-cell architecture of the nuclear pore and snapshots of its turnover. Nature. 586 (7831), 796‒800.

    Article  CAS  PubMed  Google Scholar 

  4. Schuller A.P., Wojtynek M., Mankus D., Tatli M., Kronenberg-Tenga R., Regmi S.G., Dip P.V., Lytton-Jean A.K.R., Brignole E.J., Dasso M., Weis K., Medalia O., Schwartz T.U. 2021. The cellular environment shapes the nuclear pore complex architecture. Nature. 598 (7882), 667‒671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wool I.G., Chan Y.L., Glück A. 1995. Structure and evolution of mammalian ribosomal proteins. Biochem. Cell. Biol. 73 (11‒12), 933‒947.

    Article  CAS  PubMed  Google Scholar 

  6. Callan H.G., Tomlin S.G. 1950. Experimental studies on amphibian oocyte nuclei. I. Investigation of the structure of the nuclear membrane by means of the electron microscope. Proc. R. Soc. London, Ser. B. 137 (888), 367‒378.

    Article  CAS  Google Scholar 

  7. Dwyer N., Blobel G. 1976. A modified procedure for the isolation of a pore complex–lamina fraction from rat liver nuclei. J. Cell. Biol. 70 (3), 581‒591.

    Article  CAS  PubMed  Google Scholar 

  8. Akey C.W., Radermacher M. 1993. Architecture of the Xenopus nuclear pore complex revealed by three-dimensional cryo-electron microscopy. J. Cell. Biol. 122 (1), 1‒19.

    Article  CAS  PubMed  Google Scholar 

  9. Rout M.P., Blobel G. 1993. Isolation of the yeast nuclear pore complex. J. Cell. Biol. 123 (4), 771‒783.

    Article  CAS  PubMed  Google Scholar 

  10. Yang Q., Rout M.P., Akey C.W. 1998. Three-dimensional architecture of the isolated yeast nuclear pore complex: functional and evolutionary implications. Mol. Cell. 1 (2) 223‒234.

    Article  CAS  PubMed  Google Scholar 

  11. Cronshaw J.M., Krutchinsky A.N., Zhang W., Chait B.T., Matunis M.L.J. 2002. Proteomic analysis of the mammalian nuclear pore complex. J. Cell. Biol. 158 (5), 915‒927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rout M.P., Aitchison J.D., Suprapto A., Hjertaas K., Zhao Y., Chait B.T. 2000. The yeast nuclear pore complex: composition, architecture, transport mechanism. J. Cell. Biol. 148 (4), 635‒651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gomez-Cavazos J.S., Hetzer M.W. 2015. The nucleoporin gp210/Nup210 controls muscle differentiation by regulating nuclear envelope/ER homeostasis. J. Cell. Biol. 208 (6), 671‒681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pritchard C.E.J., Fornerod M., Kasper L.H., van Deursen J.M.A. 2000. RAE1 is a shuttling mRNA export factor that binds to a GLEBS-like NUP98 motif at the nuclear pore complex through multiple domains. J. Cell Biol. 145 (2), 237‒254.

    Article  Google Scholar 

  15. Griffis E.R., Altan N., Lippincott-Schwartz J., Powers M.A. 2002. Nup98 is a mobile nucleoporin with transcription-dependent dynamics. Mol. Biol. Cell. 13 (4), 1292‒1297.

    Article  Google Scholar 

  16. Kendirgi F., Barry D.M., Griffis E.R., Powers M.A., Wente S.R. 2003. An essential role for hGle1 nucleocytoplasmic shuttling in mRNA export. J. Cell. Biol. 160 (7), 1029‒1040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Griffis E.R., Craige B., Dimaano C., Ullman K.S., Powers M.A. 2004. Distinct functions domains within nucleoporins Nup153 and Nup98 mediate transcription-dependent mobility. Mol. Biol. Cell. 15 (4), 1991‒2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Capelson M., Liang Y., Schulte R., Mair W., Wagner U., Hetzer M.W. 2010. Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell. 140 (3), 372‒383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kalverda B., Pickersgill H., Shloma V.V., Fornerod M. 2010. Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell. 140 (3), 360‒371.

    Article  CAS  PubMed  Google Scholar 

  20. Brown C.R., Kennedy C.J., Delmar V.A., Forbes D.J., Silver P.A. 2008. Global histone acetylation induces functional genomic reorganization at mammalian nuclear pore complexes. Genes Dev. 22 (5), 627‒639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ribbeck K., Görlich D. 2002. The permeability barrier of nuclear pore complexes appears to operate via hydrophobic exclusion. EMBO J. 21 (11), 2664‒2671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. von Appen A., Beck M. 2016. Structure determination of the nuclear pore complex with three-dimensional cryo electron microscopy. J. Mol. Biol. 428 (10), 2001‒2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stuwe T., Correia A.R., Lin D.H., Paduch M., Lu V.T., Kossiakoff A.A., Hoelz A. 2015. Architecture of the nuclear pore complex coat. Science. 347 (6226), 1148‒1152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Siniossoglou S., Lutzmann M., Santos-Rosa H., Leonard K., Mueller S., Aebi U., Hurt E. 2000. Structure and assembly of the Nup84p complex. J. Cell. Biol. 149 (1), 41‒54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. von Appen A., Kosinski J., Sparks L., Ori A., DiGuilio A.L., Vollmer B., Mackmull M.T., Banterle N., Parca L.,Kastritis P., Buczak K., Mosalaganti S., Hagen W., Andres-Pons A., Lemke E.A., Bork P., Antonin W., Glavy J.S., Bui K.H., Beck M. 2015. In situ structural analysis of the human nuclear pore complex. Nature. 526 (7571), 140‒143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bui K.H., von Appen A., DiGuilio A.L., Ori A., Sparks L., Mackmull M.T., Bock T., Hagen W., Andrés-Pons A., Glavy J.S., Beck M. 2013. Integrated structural analysis of the human nuclear pore complex scaffold. Cell. 155 (6), 1233‒1243.

    Article  CAS  PubMed  Google Scholar 

  27. Rajoo S., Vallotton P., Onischenko E., Weis K. 2018. Stoichiometry and compositional plasticity of the yeast nuclear pore complex revealed by quantitative fluorescence microscopy. Proc. Natl. Acad. Sci. U. S. A. 115 (17), 3969‒3977.

    Article  Google Scholar 

  28. Rasala B.A., Orjalo A.V., Shen Z., Briggs S., Forbes D.J. 2006. ELYS is a dual nucleoporin/kinetochore protein required for nuclear pore assembly and proper cell division. Proc. Natl. Acad. Sci. U. S. A. 103 (47), 17801‒17806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rout M.P., Field M.C. 2017. The evolution of organellar coat complexes and organization of the eukaryotic cell. Annu. Rev. Biochem. 86, 637‒657.

    Article  CAS  PubMed  Google Scholar 

  30. Beck M., Baumeister W. 2016. Cryo-electron tomography: can it reveal the molecular sociology of cells in atomic detail? Trends Cell. Biol. 26 (11), 825‒837.

    Article  PubMed  Google Scholar 

  31. Mosalaganti S., Kosinski J.,Albert S., Schaffer M., Strenkert D., Salomé P.A., Merchant S.S., Plitzko J.M., Baumeister W., Engel B.D., Beck M. 2018. In situ architecture of the algal nuclear pore complex. Nat. Commun. 9 (1), 2361.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Adams R.L., Mason A.C., Glass L., Aditi, Wente S.R. 2017. Nup42 and IP 6 coordinate Gle1 stimulation of Dbp5/DDX19B for mRNA export in yeast and human cells. Traffic. 18 (12), 776‒790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fornerod M., van Deursen J., van Baal S., Reynolds A., Davis D., Murti K.G., Fransen J., Grosveld G. 1997. The human homologue of yeast CRM1 is in a dynamic subcomplex with CAN/Nup214 and a novel nuclear pore component Nup88. EMBO J. 16 (4), 807‒816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lin D.H., Correia A.R., Cai S.W., Huber F.M., Jette C.A., Hoelz A. 2018. Structural and functional analysis of mRNA export regulation by the nuclear pore complex. Nat. Commun. 9 (1), 2319.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Port S.A., Monecke T., Dickmanns A., Spillner C., Hofele R., Urlaub H., Ficner R., Kehlenbach R.H. 2015. Structural and functional characterization of CRM1-Nup214 interactions reveals multiple FG-binding sites involved in nuclear export. Cell. Rep. 13 (4), 690‒702.

    Article  CAS  PubMed  Google Scholar 

  36. Ritterhoff T., Das H., Hofhaus G., Schröder R.R., Flotho A., Melchior F. 2016. The RanBP2/RanGAP1*SUMO1/Ubc9 SUMO E3 ligase is a disassembly machine for Crm1-dependent nuclear export complexes. Nat. Commun. 7, 11482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hutten S., Flotho A., Melchior F., Kehlenbach R.H. 2008. The Nup358-RanGAP complex is required for efficient importin α/β-dependent nuclear import. Mol. Biol. Cell. 19 (5), 2300‒2310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mahadevan K., Zhang H., Akef A., Cui X.A., Gueroussov S., Cenik C., Roth F.P., Palazzo A.F. 2013. RanBP2/Nup358 potentiates the translation of a subset of mRNAs encoding secretory proteins. PLoS Biol. 11 (4), e1001545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dharan A., Talley S., Tripathi A., Mamede J.I., Majetschak M., Hope T.J., Campbell E.M. 2016. KIF5B and Nup358 cooperatively mediate the nuclear import of HIV-1 during infection. PLoS Pathog. 12 (6), e1005700.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Krull S., Thyberg J., Björkroth B., Rackwitz H.R., Cordes V.C. 2004. Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket. Mol. Biol. Cell. 15 (9), 4261‒4277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Krull S., Dörries J., Boysen B., Reidenbach S., Magnius L., Norder H., Thyberg J., Cordes V.C. 2010. Protein Tpr is required for establishing nuclear pore-associated zones of heterochromatin exclusion. EMBO J. 29 (10), 1659‒1673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stewart M. 2007. Molecular mechanism of the nuclear protein import cycle. Nat. Rev. Mol. Cell. Biol. 8 (3), 195‒208.

    Article  CAS  PubMed  Google Scholar 

  43. Eisenhardt N., Redolfi J., Antonin W. 2014. Interaction of Nup53 with Ndc1 and Nup155 is required for nuclear pore complex assembly. J. Cell. Sci. 127 (4), 908‒921.

    CAS  PubMed  Google Scholar 

  44. Mansfeld J., Güttinger S., Hawryluk-Gara L.A., Panté N., Mall M., Galy V., Haselmann U., Mühlhäusser P., Wozniak R.W., Mattaj I.W., Kutay U., Antonin W. 2006. the conserved transmembrane nucleoporin NDC1 is required for nuclear pore complex assembly in vertebrate cells. Mol. Cell. 22 (1), 93‒103.

    Article  CAS  PubMed  Google Scholar 

  45. Mitchell J.M., Mansfeld J., Capitanio J., Kutay U., Wozniak R.W. 2010. Pom121 links two essential subcomplexes of the nuclear pore complex core to the membrane. J. Cell. Biol. 191 (3), 505‒521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tompa P. 2012. Intrinsically disordered proteins: a 10-year recap. Trends Biochem. Sci. 37 (12), 509‒516.

    Article  CAS  PubMed  Google Scholar 

  47. Tompa P. 2011. Unstructural biology coming of age. Curr. Opin. Struct. Biol. 21 (3), 419‒425.

    Article  CAS  PubMed  Google Scholar 

  48. van Roey K., Uyar B., Weatheritt R.J., Dinkel H., Seiler M., Budd A., Gibson T.J., Davey N.E. 2014. Short linear motifs: ubiquitous and functionally diverse protein interaction modules directing cell regulation. Chem. Rev. 114 (13), 6733‒6778.

    Article  CAS  PubMed  Google Scholar 

  49. Davey N.E., Roey K.V., Weatheritt R.J., Toedt G., Uyar B., Altenberg B., Budd A., Diella F., Dinkel H., Gibson T.J. 2012. Attributes of short linear motifs. Mol. Biosyst. 8 (1), 268‒281.

    Article  CAS  PubMed  Google Scholar 

  50. Davey N.E., Cyert M.S., Moses A.M. 2015. Short linear motifs—ex nihilo evolution of protein regulation. Cell Commun. Signal. 13, 43.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lin D.H., Stuwe T., Schilbach S., Rundlet E.J., Perriches T., Mobbs G., Fan Y., Thierbach K., Huber F.M., Collins L.N., Davenport A.M., Jeon Y.E., Hoelz A. 2016. Architecture of the symmetric core of the nuclear pore. Science. 352 (6283), aaf1015.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Fischer J., Teimer R., Amlacher S., Kunze R., Hurt E. 2015. Linker Nups connect the nuclear pore complex inner ring with the outer ring and transport channel. Nat. Struct. Mol. Biol. 22 (10) 774‒781.

    Article  CAS  PubMed  Google Scholar 

  53. Hülsmann B.B., Labokha A.A., Görlich D. 2012. The permeability of reconstituted nuclear pores provides direct evidence for the selective phase model. Cell. 150 (4), 738‒751.

    Article  PubMed  Google Scholar 

  54. Doucet C.M., Talamas J.A., Hetzer M.W. 2010. Cell cycle-dependent differences in nuclear pore complex assembly in Metazoa. Cell. 141 (6), 1030‒1041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Linder M., Köhler M., Boersema P., Weberruss M., Wandke C., Marino J., Ashiono C., Picotti P, Antonin W., Kutay U. 2017. Mitotic disassembly of nuclear pore complexes involves CDK1- and PLK1-mediated phosphorylation of key interconnecting nucleoporins. Dev. Cell. 43 (2), 141‒156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Laurell E., Beck K., Krupina K., Theerthagiri G., Bodenmiller B., Horvath P., Aebersold R., Antonin W., Kutay U. 2011. Phosphorylation of Nup98 by multiple kinases is crucial for NPC disassembly during mitotic entry. Cell. 144 (4), 539‒550.

    Article  CAS  PubMed  Google Scholar 

  57. Belgareh N., Rabut G., Baï S.W., van Overbeek M., Beaudouin J., Daigle N., Zatsepina O.V., Pasteau F., Labas V., Fromont-Racine M., Ellenberg J., Doye V. 2001. An evolutionarily conserved NPC subcomplex, which redistributes in part to kinetochores in mammalian cells. J. Cell Biol. 154 (6), 1147‒1160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Katsani K.R., Karess R.E., Dostatni N., Doye V. 2008. In vivo dynamics of Drosophila nuclear envelope components. Mol. Biol. Cell. 19 (9), 3652‒3666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Loïodice I., Alves A., Rabut G., van Overbeek M., Ellenberg J., Sibarita J.B., Doye V. 2004. The entire Nup107-160 complex, including three new members, is targeted as one entity to kinetochores in mitosis. Mol. Biol. Cell. 15 (7), 3333‒3344.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Joseph J., Liu S.T., Jablonski S.A., Yen T.J., Dasso M. 2004. The RanGAP1-RanBP2 complex is essential for microtubule-kinetochore interactions in vivo. Curr. Biol-. 14 (7), 611‒617.

    Article  CAS  PubMed  Google Scholar 

  61. Hattersley N., Cheerambathur D., Moyle M., Stefanutti M., Richardson A., Lee K.Y., Dumont J., Oegema K., Desai A. 2016. A nucleoporin docks protein phosphatase 1 to direct meiotic chromosome segregation and nuclear assembly. Dev. Cell. 38 (5), 463‒477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Anderson D.J., Hetzer M.W. 2007. Nuclear envelope formation by chromatin-mediated reorganization of the endoplasmic reticulum. Nat. Cell. Biol. 9 (10), 1160‒1166.

    Article  CAS  PubMed  Google Scholar 

  63. Otsuka S., Steyer A.M., Schorb M., Hériché J.K., Hossain M.J., Sethi S., Kueblbeck M., Schwab Y., Beck M., Ellenberg J. 2018. Postmitotic nuclear pore assembly proceeds by radial dilation of small membrane openings. Nat. Struct. Mol. Biol. 25 (1), 21‒28.

    Article  CAS  PubMed  Google Scholar 

  64. Franz C., Walczak R., Yavuz S., Santarella R., Gentzel M., Askjaer P., Galy V., Hetzer M., Mattaj I.W., Antonin W. 2007. MEL-28/ELYS is required for the recruitment of nucleoporins to chromatin and postmitotic nuclear pore complex assembly. EMBO Rep. 8 (2), 165‒172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rasala B.A., Ramos C., Harel A., Forbes D.J. 2008. Capture of AT-rich chromatin by ELYS recruits POM121 and NDC1 to initiate nuclear pore assembly. Mol. Biol. Cell. 19 (9), 3982‒3996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Capelson M., Hetzer M.W. 2009. The role of nuclear pores in gene regulation, development and disease. EMBO Rep. 10 (7), 697‒705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Galy V., Askjaer P., Franz C., López-Iglesias C., Mattaj I.W. 2006. MEL-28, a novel nuclear-envelope and kinetochore protein essential for zygotic nuclear-envelope assembly in C. elegans. Curr. Biol. 16 (17), 1748‒1756.

    Article  CAS  PubMed  Google Scholar 

  68. Walther T.C., Askjaer P., Gentzel M., Habermann A., Griffiths G., Wilm M., Mattaj I.W., Hetzer M. 2003. RanGTP mediates nuclear pore complex assembly. Nature. 424 (6949), 689‒694.

    Article  CAS  PubMed  Google Scholar 

  69. Dultz E., Zanin E., Wurzenberger C., Braun M., Rabut G., Sironi L., Ellenberg J. 2008. Systematic kinetic analysis of mitotic dis- and reassembly of the nuclear pore in living cells. J. Cell. Biol. 180 (5), 857‒865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hawryluk-Gara L.A., Shibuya E.K., Wozniak R.W. 2005. Vertebrate Nup53 interacts with the nuclear lamina and is required for the assembly of a Nup93-containing complex. Mol. Biol. Cell. 16 (5), 2382‒2394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Otsuka S., Bui K.H., Schorb M., Julius Hossain M., Politi A.Z., Koch B., Eltsov M., Beck M., Ellenberg J. 2016. Nuclear pore assembly proceeds by an inside-out extrusion of the nuclear envelope. Elife. 5 (5), e19071.

    Article  PubMed  PubMed Central  Google Scholar 

  72. de Magistris P., Tatarek-Nossol M., Dewor M., Antonin W. 2018. A self-inhibitory interaction within Nup155 and membrane binding are required for nuclear pore complex formation. J. Cell. Sci. 131 (1), jcs208538.

    PubMed  Google Scholar 

  73. Haraguchi T., Koujin T., Hayakawa T., Kaneda T., Tsutsumi C., Imamoto N., Akazawa C., Sukegawa J., Yoneda Y., Hiraoka Y. 2000. Live fluorescence imaging reveals early recruitment of emerin, LBR, RanBP2, and Nup153 to reforming functional nuclear envelopes. J. Cell. Sci. 113 (5), 779‒794.

    Article  CAS  PubMed  Google Scholar 

  74. Dultz E., Huet S., Ellenberg J. 2009. Formation of the nuclear envelope permeability barrier studied by sequential photoswitching and flux analysis. Biophys. J. 97 (7), 1891‒1897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kapinos L.E., Huang B., Rencurel C., Lim R.Y.H. 2017. Karyopherins regulate nuclear pore complex barrier and transport function. J. Cell. Biol. 216 (11), 3609‒3624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lowe A.R., Tang J.H., Yassif J., Graf M., Huang W.Y.C., Groves J.T., Weis K., Liphardt J.T. 2015. Importin-β modulates the permeability of the nuclear pore complex in a Ran-dependent manner. Elife. 2015 (4), e04052.

  77. Makio T., Stanton L.H., Lin C.C., Goldfarb D.S., Weis K., Wozniak R.W. 2009. The nucleoporins Nup170p and Nup157p are essential for nuclear pore complex assembly. J. Cell. Biol. 185 (3), 459‒437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Webster B.M., Colombi P., Jäger J., Lusk C.P. 2014. Surveillance of nuclear pore complex assembly by ESCR-T-III/Vps4. Cell. 159 (2), 388‒401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wente S.R., Blobel G. 1993. A temperature-sensitive NUP116 null mutant forms a nuclear envelope seal over the yeast nuclear pore complex thereby blocking nucleocytoplasmic traffic. J. Cell. Biol. 123 (2), 275‒284.

    Article  CAS  PubMed  Google Scholar 

  80. Vollmer B., Lorenz M., Moreno-Andrés D., Bodenhöfer M., De Magistris P., Astrinidis S.A., Schooley A., Flötenmeyer M., Leptihn S., Antonin W. 2015. Nup153 recruits the Nup107-160 complex to the inner nuclear membrane for interphasic nuclear pore complex assembly. Dev. Cell. 33 (6), 717‒728.

    Article  CAS  PubMed  Google Scholar 

  81. Dawson T.R., Lazarus M.D., Hetzer M.W., Wente S.R. 2009. ER membrane-bending proteins are necessary for de novo nuclear pore formation. J. Cell. Biol. 184 (5), 659‒675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Vollmer B., Schooley A., Sachdev R., Eisenhardt N., Schneider A.M., Sieverding C., Madlung J., Gerken U., Macek B., Antonin W. 2012. Dimerization and direct membrane interaction of Nup53 contribute to nuclear pore complex assembly. EMBO J. 3120. 4072‒4084.

    Article  Google Scholar 

  83. Hampoelz B., Mackmull M.T., Machado P., Ronchi P., Bui K.H., Schieber N., Santarella-Mellwig R., Necakov A., Andrés-Pons A., Philippe J.M., Lecuit T., Schwab Y., Beck M. 2016. Pre-assembled nuclear pores insert into the nuclear envelope during early development. Cell. 166 (3) 664‒678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Onischenko E.A., Gubanova N.V., Kiseleva E.V., Hallberg E. 2005. Cdk1 and okadaic acid-sensitive phosphatases control assembly of nuclear pore complexes in Drosophila embryos. Mol. Biol. Cell. 16 (11), 5152‒5162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Stafstrom J.P., Staehelin L.A. 1984. Dynamics of the nuclear envelope and of nuclear pore complexes during mitosis in the Drosophila embryo. Eur. J. Cell Biol. 34 (1), 179‒189.

    CAS  PubMed  Google Scholar 

  86. D′Angelo M.A., Anderson D.J., Richard E., Hetzer M.W. 2006. Nuclear pores form de novo from both sides of the nuclear envelope. Science. 312 (5772), 440‒443.

  87. Cordes V.C., Rackwitz H.R., Reidenbach S. 1997. Mediators of nuclear protein import target karyophilic proteins to pore complexes of cytoplasmic annulate lamellae. Exp. Cell Res. 237 (2), 419‒433.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The review was written with a grant from the Russian Science Foundation (project No. 22-14-00270).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Orlova.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Abbreviations: NPC (Nuclear Pore Complex), nuclear pore complex; FG repeat (Phe-Gly repeat), a nucleoporin fragment enriched with phenylalanine and glycine residues; SLiM (Short Linear Motif), short (up to ten amino acids) fragments of a protein molecule that play a key role in the formation of interactions with other proteins; CDK (Cyclin dependent kinase), cyclin-dependent kinase; PLK (Polo-like kinase), Sex-like kinase; PP1 (Protein phosphatase 1), protein phosphatase 1; ELYS (Embryonic Large molecule derived from Yolk Sac), component of the Y-complex; EPR, endoplasmic reticulum; AL (Anullate Lamellae), cistern-like EPR elements; ALPC (Anullate Lamellae Pore Complex), non-nuclear pore complex.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlova, A.V., Georgieva, S.G. & Kopytova, D.V. Assembly and Disassembly of the Nuclear Pore Complex: A View from the Structural Side. Mol Biol 57, 572–583 (2023). https://doi.org/10.1134/S0026893323040131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893323040131

Keywords:

Navigation