Skip to main content
Log in

Alternative Mechanisms of Mutagenesis at mCpG Sites during Replication and Repair

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

5-Methyl-2'-deoxycytidine (mC) at CpG sites plays a key role in the epigenetic gene regulation, cell differentiation, and carcinogenesis. Despite the importance of mC for normal cell function, CpG dinucleotides are known as mutagenesis hotspots. Deamination of mC yields T, causing C→T transitions. However, several recent studies demonstrated the effect of epigenetic modifications of C on the fidelity and efficiency of DNA polymerases and excision repair enzymes. The review summarizes the available data that indicate the existence of deamination-independent mechanisms of mutagenesis at CpG sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Jones P.A. 2012. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484–492.

    Article  CAS  PubMed  Google Scholar 

  2. Szulwach K.E., Jin P. 2014. Integrating DNA methylation dynamics into a framework for understanding epigenetic codes. BioEssays. 36, 107–117.

    Article  CAS  PubMed  Google Scholar 

  3. Smith Z.D., Meissner A. 2013. DNA methylation: roles in mammalian development. Nat. Rev. Genet. 14, 204–220.

    Article  CAS  PubMed  Google Scholar 

  4. Lyko F. 2018. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat. Rev. Genet. 19, 81–92.

    Article  CAS  PubMed  Google Scholar 

  5. Stevens M., Cheng J.B., Li D., Xie M., Hong C., Maire C.L., Ligon K.L., Hirst M., Marra M.A., Costello J.F., Wang T. 2013. Estimating absolute methylation levels at single-CpG resolution from methylation enrichment and restriction enzyme sequencing methods. Genome Res. 23, 1541–1553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wu X., Zhang Y. 2017. TET-mediated active DNA demethylation: mechanism, function and beyond. Nat. Rev. Genet. 18, 517–534.

    Article  CAS  PubMed  Google Scholar 

  7. Klungland A., Robertson A.B. 2017. Oxidized C5-methyl cytosine bases in DNA: 5-hydroxymethylcytosine; 5‑formylcytosine; and 5-carboxycytosine. Free Radic. Biol. Med. 107, 62–68.

    Article  CAS  PubMed  Google Scholar 

  8. Branco M.R., Ficz G., Reik W. 2012. Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat. Rev. Genet. 13, 7–13.

    Article  CAS  Google Scholar 

  9. He Y.-F., Li B.-Z., Li Z., Liu P., Wang Y., Tang Q., Ding J., Jia Y., Chen Z., Li L., Sun Y., Li X., Dai Q., Song C.-X., Zhang K., He C., Xu G.-L. 2011. Tet-Mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 333, 1303–1307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Weber A.R., Krawczyk C., Robertson A.B., Kuśnierczyk A., Vågbø C.B., Schuermann D., Klungland A., Schär P. 2016. Biochemical reconstitution of TET1–TDG–BER-dependent active DNA demethylation reveals a highly coordinated mechanism. Nat. Commun. 7, 10806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kohli R.M., Zhang Y. 2013. TET enzymes, TDG and the dynamics of DNA demethylation. Nature. 502, 472–479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tomkova M., McClellan M., Kriaucionis S., Schuster-Boeckler B. 2016. 5-Hydroxymethylcytosine marks regions with reduced mutation frequency in human DNA. Elife. 5, 1–23.

    Article  Google Scholar 

  13. Bachman M., Uribe-Lewis S., Yang X., Burgess H.E., Iurlaro M., Reik W., Murrell A., Balasubramanian S. 2015. 5-Formylcytosine can be a stable DNA modification in mammals. Nat. Chem. Biol. 11, 555–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ito S., Dalessio A.C., Taranova O., Hong K., Sowers L.C., Zhang Y. 2010. Role of tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature. 466, 1129–1133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dawlaty M.M., Breiling A., Le T., Barrasa M.I., Raddatz G., Gao Q., Powell B.E., Cheng A.W., Faull K.F., Lyko F., Jaenisch R. 2014. Loss of tet enzymes compromises proper differentiation of embryonic stem cells. Dev. Cell. 29, 102–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hahn M.A., Qiu R., Wu X., Li A.X., Zhang H., Wang J., Jui J., Jin S.G., Jiang Y., Pfeifer G.P., Lu Q. 2013. Dynamics of 5-hydroxymethylcytosine and chromatin marks in mammalian neurogenesis. Cell Rep. 3, 291–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Spruijt C.G., Gnerlich F., Smits A.H., Pfaffeneder T., Jansen P.W.T.C., Bauer C., Münzel M., Wagner M., Müller M., Khan F., Eberl H.C., Mensinga A., Brinkman A.B., Lephikov K., Müller U., Walter J., Boelens R., van Ingen H., Leonhardt H., Carell T., Vermeulen M. 2013. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell. 152, 1146–1159.

    Article  CAS  PubMed  Google Scholar 

  18. Iurlaro M., Ficz G., Oxley D., Raiber E., Bachman M., Booth M.J., Andrews S., Balasubramanian S., Reik W. 2013. A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation. Genome Biol. 14, R119.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pfeifer G.P. 2006. Mutagenesis at methylated CpG sequences. Curr. Top. Microbiol. Immunol. 301, 259–281.

    CAS  PubMed  Google Scholar 

  20. Waters T.R., Swann P.F. 2000. Thymine-DNA glycosylase and G to A transition mutations at CpG sites. Mutat. Res. Mutat. Res. 462, 137–147.

    Article  CAS  PubMed  Google Scholar 

  21. Kawai K., Wata Y., Hara M., Tojo S., Majima T. 2002. Regulation of one-electron oxidation rate of guanine by base pairing with cytosine derivatives. J. Am. Chem. Soc. 124, 3586–3590.

    Article  CAS  PubMed  Google Scholar 

  22. Hu W., Feng Z., Tang M. 2003. Preferential carcinogen−DNA adduct formation at codons 12 and 14 in the human K-ras gene and their possible mechanisms. Biochemistry. 42, 10012–10023.

    Article  CAS  PubMed  Google Scholar 

  23. Denissenko M.F., Chen J.X., Tang M.-S., Pfeifer G.P. 1997. Cytosine methylation determines hot spots of DNA damage in the human P53 gene (benzo[a]pyrene5-methylcytosine). Proc. Natl. Acad. Sci. U. S. A. 94, 3893–3898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee D.H., Pfeifer G.P. 2003. Deamination of 5-methylcytosines within cyclobutane pyrimidine dimers is an important component of UVB mutagenesis. J. Biol. Chem. 278, 10314–10321.

    Article  CAS  PubMed  Google Scholar 

  25. Rochette P.J., Lacoste S., Therrien J.P., Bastien N., Brash D.E., Drouin R. 2009. Influence of cytosine methylation on ultraviolet-induced cyclobutane pyrimidine dimer formation in genomic DNA. Mutat. Res.—Fundam. Mol. Mech. Mutagen. 665, 7–13.

    Article  CAS  Google Scholar 

  26. Shen J.-C., Creighton S., Jones P.A., Goodman M.F. 1992. A comparison of the fidelity of copying 5-methylcytosine and cytosine at a difined DNA template site. Nucleic Acids Res. 20, 5119–5125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shinbrot E., Henninger E.E., Weinhold N., Covington K.R., Göksenin A.Y., Schultz N., Chao H., Doddapaneni H., Muzny D.M., Gibbs R.A., Sander C., Pursell Z.F., Wheeler D.A. 2014. Exonuclease mutations in DNA polymerase epsilon reveal replication strand specific mutation patterns and human origins of replication. Genome Res. 24, 1740–1750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shlien A., Campbell B.B., de Borja R., Alexandrov L.B., Merico D., Wedge D., Van Loo P., Tarpey P.S., Coupland P., Behjati S., Pollett A., Lipman T., Heidari A., Deshmukh S., Avitzur N., Meier B., Gerstung M., Hong Y., Merino D.M., Ramakrishna M., Remke M., Arnold R., Panigrahi G.B., Thakkar N.P., Hodel K.P., Henninger E.E., Göksenin A.Y., Bakry D., Charames G.S., Druker H., Lerner-Ellis J., Mistry M., Dvir R., Grant R., Elhasid R., Farah R., Taylor G.P., Nathan P.C., Alexander S., Ben-Shachar S., Ling S.C., Gallinger S., Constantini S., Dirks P., Huang A., Scherer S.W., Grundy R.G., Durno C., Aronson M., Gartner A., Meyn M.S., Taylor M.D., Pursell Z.F., Pearson C.E., Malkin D., Futreal P.A., Stratton M.R., Bouffet E., Hawkins C., Campbell P.J., Tabori U., Biallelic Mismatch Repair Deficiency Consortium 2015. Combined hereditary and somatic mutations of replication error repair genes result in rapid onset of ultra-hypermutated cancers. Nat. Genet. 47, 257–262.

    Article  CAS  PubMed  Google Scholar 

  29. Nebot-Bral L., Brandao D., Verlingue L., Rouleau E., Caron O., Despras E., El-Dakdouki Y., Champiat S., Aoufouchi S., Leary A., Marabelle A., Malka D., Chaput N., Kannouche P.L. 2017. Hypermutated tumours in the era of immunotherapy: the paradigm of personalised medicine. Eur. J. Cancer. 84, 290–303.

    Article  CAS  PubMed  Google Scholar 

  30. Alexandrov L.B., Nik-Zainal S., Wedge D.C., Aparicio S.A.J.R., Behjati S., Biankin A. V., Bignell G.R., Bolli N., Borg A., Børresen-Dale A.-L., Boyault S., Burkhardt B., Butler A.P., Caldas C., Davies H.R., Desmedt C., Eils R., Eyfjörd J.E., Foekens J.A., Greaves M., Hosoda F., Hutter B., Ilicic T., Imbeaud S., Imielinski M., Jäger N., Jones D.T.W., Jones D., Knappskog S., Kool M., Lakhani S.R., López-Otín C., Martin S., Munshi N.C., Nakamura H., Northcott P.A., Pajic M., Papaemmanuil E., Paradiso A., Pearson J.V., Puente X.S., Raine K., Ramakrishna M., Richardson A.L., Richter J., Rosenstiel P., Schlesner M., Schumacher T.N., Span P.N., Teague J.W., Totoki Y., Tutt A.N.J., Valdés-Mas R., van Buuren M.M., van’t Veer L., Vincent-Salomon A., Waddell N., Yates L.R., Australian Pancreatic Cancer Genome Initiative, ICGC Breast Cancer Consortium, ICGC MMML-Seq Consortium, ICGC PedBrain, Zucman-Rossi J., Futreal P.A., McDermott U., Lichter P., Meyerson M., Grimmond S.M., Siebert R., Campo E., Shibata T., Pfister S.M., Campbell P.J., Stratton M.R. 2013. Signatures of mutational processes in human cancer. Nature. 500, 415–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Alexandrov L.B., Kim J., Haradhvala N.J., Huang M.N., Tian Ng A.W., Wu Y., Boot A., Covington K.R., Gordenin D.A., Bergstrom E.N., Islam S.M.A., Lopez-Bigas N., Klimczak L.J., McPherson J.R., Morganella S., Sabarinathan R., Wheeler D.A., Mustonen V., Getz G., Rozen S.G., Stratton M.R. 2020. The repertoire of mutational signatures in human cancer. Nature. 578, 94–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mertz T.M., Baranovskiy A.G., Wang J., Tahirov T.H., Shcherbakova P.V. 2017. Nucleotide selectivity defect and mutator phenotype conferred by a colon cancer-associated DNA polymerase δ mutation in human cells. Oncogene. 36, 4427–4433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barbari S.R., Shcherbakova P.V. 2017. Replicative DNA polymerase defects in human cancers: consequences, mechanisms, and implications for therapy. DNA Repair (Amst.). 56, 16–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rayner E., Van Gool I.C., Palles C., Kearsey S.E., Bosse T., Tomlinson I., Church D.N. 2016. A panoply of errors: polymerase proofreading domain mutations in cancer. Nat. Rev. Cancer. 16, 71–81.

    Article  CAS  PubMed  Google Scholar 

  35. Tomkova M., McClellan M., Kriaucionis S., Schuster-Böckler B. 2018. DNA replication and associated repair pathways are involved in the mutagenesis of methylated cytosine. DNA Repair (Amst.). 62, 1–7.

    Article  CAS  PubMed  Google Scholar 

  36. Poulos R.C., Olivier J., Wong J.W.H. 2017. The interaction between cytosine methylation and processes of DNA replication and repair shape the mutational landscape of cancer genomes. Nucleic Acids Res. 45, 7786–7795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tomkova M., Tomek J., Kriaucionis S., Schuster-Böckler B. 2018. Mutational signature distribution varies with DNA replication timing and strand asymmetry. Genome Biol. 19, 1–12.

    Article  Google Scholar 

  38. Supek F., Lehner B. 2015. Differential DNA mismatch repair underlies mutation rate variation across the human genome. Nature. 521, 81–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huber C., von Watzdorf J., Marx A. 2016. 5-methylcytosine-sensitive variants of Thermococcus kodakaraensis DNA polymerase. Nucleic Acids Res. 44, 9881–9890.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. von Watzdorf J., Leitner K., Marx A. 2016. Modified nucleotides for discrimination between cytosine and the epigenetic marker 5-methylcytosine. Angew. Chemie Int. Ed. 55, 3229–3232.

    Article  CAS  Google Scholar 

  41. Aschenbrenner J., Drum M., Topal H., Wieland M., Marx A. 2014. Direct sensing of 5-methylcytosine by polymerase chain reaction. Angew. Chemie Int. Ed. 53, 8154–8158.

    Article  CAS  Google Scholar 

  42. Rausch C., Zhang P., Casas-Delucchi C.S., Daiß J.L., Engel C., Coster G., Hastert F.D., Weber P., Cardoso M.C. 2021. Cytosine base modifications regulate DNA duplex stability and metabolism. Nucleic Acids Res. 49, 12870–12894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lebedev Y., Akopyants N., Azhikina T., Shevchenko Y., Potapov V., Stecenko D., Berg D., Sverdlov E. 1996. Oligonucleotides containing 2-aminoadenine and 5‑methylcytosine are more effective as primers for PCR amplification than their nonmodified counterparts. Genet. Anal. Biomol. Eng. 13, 15–21.

    Article  CAS  Google Scholar 

  44. Rodríguez López C.M., Lloyd A.J., Leonard K., Wilkinson M.J. 2012. Differential effect of three base modifications on DNA thermostability revealed by high resolution melting. Anal. Chem. 84, 7336–7342.

    Article  Google Scholar 

  45. Shibutani T., Ito S., Toda M., Kanao R., Collins L.B., Shibata M., Urabe M., Koseki H., Masuda Y., Swenberg J.A., Masutani C., Hanaoka F., Iwai S., Kuraoka I. 2015. Guanine-5-carboxylcytosine base pairs mimic mismatches during DNA replication. Sci. Rep. 4, 5220.

    Article  Google Scholar 

  46. Lee J.Y., Park J.W. 2022. Modified cytosines versus cytosine in a DNA polymerase: retrieving thermodynamic and kinetic constants at the single molecule level. Anal-yst. 147, 341–348.

    CAS  Google Scholar 

  47. Flusberg B.A., Webster D.R., Lee J.H., Travers K.J., Olivares E.C., Clark T.A., Korlach J., Turner S.W. 2010. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Methods. 7, 461–465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Howard M.J., Foley K.G., Shock D.D., Batra V.K., Wilson S.H. 2019. Molecular basis for the faithful replication of 5-methylcytosine and its oxidized forms by DNA polymerase β. J. Biol. Chem. 294, 7194–7201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shilkin E.S., Petrova D.V., Poltorachenko V.A., Boldinova E.O., Zharkov D.O., Makarova A.V. 2021. Template properties of 5-methyl-2'-deoxycytidine and 5‑hydroxymethyl-2'-deoxycytidine in reactions with human translesion and reparative DNA polymerases. Mol. Biol. (Moscow). 55, 267–272.

    Article  CAS  Google Scholar 

  50. Karino N. 2001. Synthesis and properties of oligonucleotides containing 5-formyl-2'-deoxycytidine: in vitro DNA polymerase reactions on DNA templates containing 5-formyl-2'-deoxycytidine. Nucleic Acids Res. 29, 2456–2463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Münzel M., Lischke U., Stathis D., Pfaffeneder T., Gnerlich F.A., Deiml C.A., Koch S.C., Karaghiosoff K., Carell T. 2011. Improved synthesis and mutagenicity of oligonucleotides containing 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine. Chem. Eur. J. 17, 13782–13788.

    Article  PubMed  Google Scholar 

  52. Song Q., Sherrer S.M., Suo Z., Taylor J.-S. 2012. Preparation of site-specific T=mCG cissyn cyclobutane dimer-containing template and its error-free bypass by yeast and human polymerase η. J. Biol. Chem. 287, 8021–8028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wanrooij S., Falkenberg M. 2010. The human mitochondrial replication fork in health and disease. Biochim. Biophys. Acta, Bioenerg. 1797, 1378–1388.

    Article  CAS  Google Scholar 

  54. Shock L.S., Thakkar P.V., Peterson E.J., Moran R.G., Taylor S.M. 2011. DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proc. Natl. Acad. Sci. U. S. A. 108, 3630–3635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Matsuda S., Yasukawa T., Sakaguchi Y., Ichiyanagi K., Unoki M., Gotoh K., Fukuda K., Sasaki H., Suzuki T., Kang D. 2018. Accurate estimation of 5-methylcytosine in mammalian mitochondrial DNA. Sci. Rep. 8, 5801.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lopes A.F.C. 2020. Mitochondrial metabolism and DNA methylation: a review of the interaction between two genomes. Clin. Epigenetics. 12, 182.

    Article  Google Scholar 

  57. Stoccoro A., Coppedè F. 2021. Mitochondrial DNA methylation and human diseases. Int. J. Mol. Sci. 22, 4594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fang Y., Zou P. 2020. Genome-wide mapping of oxidative DNA damage via engineering of 8-oxoguanine DNA glycosylase. Biochemistry. 59, 85–89.

    Article  CAS  PubMed  Google Scholar 

  59. Wang H., Wang Y. 2009. 6-Thioguanine perturbs cytosine methylation at the CpG dinucleotide site by DNA methyltransferases in vitro and acts as a DNA demethylating agent in vivo. Biochemistry. 48, 2290–2299.

    Article  CAS  PubMed  Google Scholar 

  60. Kasymov R.D., Grin I.R., Endutkin A.V., Smirnov S.L., Ishchenko A.A., Saparbaev M.K., Zharkov D.O. 2013. Excision of 8-oxoguanine from methylated CpG dinucleotides by human 8-oxoguanine DNA glycosylase. FEBS Lett. 587, 3129–3134.

    Article  CAS  PubMed  Google Scholar 

  61. Sassa A., Çağlayan M., Dyrkheeva N.S., Beard W.A., Wilson S.H. 2014. Base excision repair of tandem modifications in a methylated CpG dinucleotide. J. Biol. Chem. 289, 13996–14008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lai Y., Jiang Z., Zhou J., Osemota E., Liu Y. 2016. AP endonuclease 1 prevents the extension of a T/G mismatch by DNA polymerase β to prevent mutations in CpGs during base excision repair. DNA Repair (Amst.). 43, 89–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Viel A., Bruselles A., Meccia E., Fornasarig M., Quaia M., Canzonieri V., Policicchio E., Urso E.D., Agostini M., Genuardi M., Lucci-Cordisco E., Venesio T., Martayan A., Diodoro M.G., Sanchez-Mete L., Stigliano V., Mazzei F., Grasso F., Giuliani A., Baiocchi M., Maestro R., Giannini G., Tartaglia M., Alexandrov L.B., Bignami M. 2017. A specific mutational signature associated with DNA 8-oxoguanine persistence in MUTYH-defective colorectal cancer. EBioMedicine. 20, 39–49.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Endutkin A.V., Yatsenko D.D., Zharkov D.O. 2022. Effect of DNA methylation on the 3'→5' exonuclease activity of major human abasic site endonuclease APEX1. Biochemistry (Moscow). 87, 10–20.

    CAS  PubMed  Google Scholar 

  65. Liu X., Xu B., Yang J., He L., Zhang Z., Cheng X., Yu H., Liu X., Jin T., Peng Y., Huang Y., Xia L., Wang Y., Wu J., Wu X., Liu S., Shan L., Yang X., Sun L., Liang J., Zhang Y., Shang Y. 2021. UHRF2 commissions the completion of DNA demethylation through allosteric activation by 5hmC and K33-linked ubiquitination of XRCC1. Mol. Cell. 81, 2960–2974.e7.

    Article  CAS  PubMed  Google Scholar 

  66. Steinacher R., Barekati Z., Botev P., Kuśnierczyk A., Slupphaug G., Schär P. 2019. SUMOylation coordinates BERosome assembly in active DNA demethylation during cell differentiation. EMBO J. 38, 1–18.

    Article  Google Scholar 

  67. Fortini P., Dogliotti E. 2007. Base damage and single-strand break repair: mechanisms and functional significance of short- and long-patch repair subpathways. DNA Repair (Amst.). 6, 398–409.

    Article  CAS  PubMed  Google Scholar 

  68. Barreto G., Schäfer A., Marhold J., Stach D., Swaminathan S.K., Handa V., Döderlein G., Maltry N., Wu W., Lyko F., Niehrs C. 2007. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature. 445, 671–675.

    Article  CAS  PubMed  Google Scholar 

  69. Santos F., Peat J., Burgess H., Rada C., Reik W., Dean W. 2013. Active demethylation in mouse zygotes involves cytosine deamination and base excision repair. Epigenetics Chromatin. 6, 39.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Grin I., Ishchenko A.A. 2016. An interplay of the base excision repair and mismatch repair pathways in active DNA demethylation. Nucleic Acids Res. 44, 3713–3727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang D., Wu W., Callen E., Pavani R., Zolnerowich N., Kodali S., Zong D., Wong N., Noriega S., Nathan W.J., Matos-Rodrigues G., Chari R., Kruhlak M.J., Livak F., Ward M., Caldecott K., Di Stefano B., Nussenzweig A. 2022. Active DNA demethylation promotes cell fate specification and the DNA damage response. Science. 378, 983–989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Petta T.B., Nakajima S., Zlatanou A., Despras E., Couve-Privat S., Ishchenko A., Sarasin A., Yasui A., Kannouche P. 2008. Human DNA polymerase iota protects cells against oxidative stress. EMBO J. 27, 2883–2895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Beard W.A., Wilson S.H. 2019. DNA polymerase beta and other gap-filling enzymes in mammalian base excision repair. Enzymes. 45, 1–26.

    Article  CAS  PubMed  Google Scholar 

  74. Markkanen E. 2017. Not breathing is not an option: how to deal with oxidative DNA damage. DNA Repair (Amst.). 59, 82–105.

    Article  CAS  PubMed  Google Scholar 

  75. Freudenthal B.D., Beard W.A., Perera L., Shock D.D., Kim T., Schlick T., Wilson S.H. 2015. Uncovering the polymerase-induced cytotoxicity of an oxidized nucleotide. Nature. 517, 635–639.

    Article  CAS  PubMed  Google Scholar 

  76. Çağlayan M., Wilson S.H. 2017. Role of DNA polymerase β oxidized nucleotide insertion in DNA ligation failure. J. Radiat. Res. 58, 603–607.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Çağlayan M., Horton J.K., Dai D.-P., Stefanick D.F., Wilson S.H. 2017. Oxidized nucleotide insertion by pol β confounds ligation during base excision repair. Nat. Commun. 8, 14045.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Çağlayan M. 2020. The ligation of pol β mismatch insertion products governs the formation of promutagenic base excision DNA repair intermediates. Nucleic Acids Res. 48, 3708–3721.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Çağlayan M. 2020. Pol β gap filling, DNA ligation and substrate–product channeling during base excision repair opposite oxidized 5-methylcytosine modifications. DNA Repair (Amst.). 95, 102945.

    Article  PubMed  Google Scholar 

  80. Vaisman A., Woodgate R. 2017. Translesion DNA polymerases in eukaryotes: what makes them tick? Crit. Rev. Biochem. Mol. Biol. 52, 274–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mitchell D.L. 2007. Effects of cytosine methylation on pyrimidine dimer formation in DNA. Photochem. Photobiol. 71, 162.

    Article  Google Scholar 

  82. Cannistraro V.J., Taylor J.-S. 2009. Acceleration of 5‑methylcytosine deamination in cyclobutane dimers by G and its implications for UV-induced C-to-T mutation hotspots. J. Mol. Biol. 392, 1145–1157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Brash D.E. 2015. UV signature mutations. Photochem. Photobiol. 91, 15–26.

    Article  CAS  PubMed  Google Scholar 

  84. Masutani C., Kusumoto R., Iwai S., Hanaoka F. 2000. Mechanisms of accurate translesion synthesis by human DNA polymerase h. EMBO J. 19, 3100–3109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ikehata H., Chang Y., Yokoi M., Yamamoto M., Hanaoka F. 2014. Remarkable induction of UV-signature mutations at the 3'-cytosine of dipyrimidine sites except at 5'-TCG-3' in the UVB-exposed skin epidermis of xeroderma pigmentosum variant model mice. DNA Repair (Amst.). 22, 112–122.

    Article  CAS  PubMed  Google Scholar 

  86. Kim S.I., Jin S.G., Pfeifer G.P. 2013. Formation of cyclobutane pyrimidine dimers at dipyrimidines containing 5-hydroxymethylcytosine. Photochem. Photobiol. Sci. 12, 1409–1415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Song Q., Cannistraro V.J., Taylor J.S. 2011. Rotational position of a 5-methylcytosine-containing cyclobutane pyrimidine dimer in a nucleosome greatly affects its deamination rate. J. Biol. Chem. 286, 6329–6335.

    Article  CAS  PubMed  Google Scholar 

  88. Cannistraro V.J., Pondugula S., Song Q., Taylor J. 2015. Rapid deamination of cyclobutane pyrimidine dimer photoproducts at TCG sites in a translationally and rotationally positioned nucleosome in vivo. J. Biol. Chem. 290, 26597–26609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. van Loon B., Markkanen E., Hübscher U. 2010. Oxygen as a friend and enemy: how to combat the mutational potential of 8-oxo-guanine. DNA Repair (Amst.). 9, 604–616.

    Article  CAS  PubMed  Google Scholar 

  90. Jiang Z., Lai Y., Beaver J.M., Tsegay P.S., Zhao M., Horton J.K., Zamora M., Rein H.L., Miralles F., Shaver M., Hutcheson J.D., Agoulnik I., Wilson S.H., Liu Y. 2020. Oxidative DNA damage modulates DNA methylation pattern in human breast cancer 1 (BRCA1) gene via the crosstalk between DNA polymerase β and a de novo DNA methyltransferase. Cells. 9, 225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 22-24-20156 (E.S. Shikin)). The analysis of mutagenesis during DNA repair was supported by the Ministry of Science and Higher Education of the Russian Federation (state contract no. 121031300056-8).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. O. Zharkov or A. V. Makarova.

Ethics declarations

The authors declare that they have no conflicts of interest. This work does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Translated by T. Tkacheva

Abbreviations: Pol, DNA polymerase; mC, 5-methyl-2'-deoxycytidine; hmC, 5-hydroxymethyl-2'-deoxycytidine; fC, 5-formyl-2'-deoxycytidine; caC, 5-carboxyl-2'-deoxycytidine; 8-oxoG, 8‑oxo-2'-deoxyguanosine; CPD, cis-syn cyclobutane pyrimidine dimer; BER, base excision repair; NER, nucleotide excision repair; MMR, mismatch repair; TDG, thymine-DNA glycosylase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shilkin, E.S., Petrova, D.V., Zharkov, D.O. et al. Alternative Mechanisms of Mutagenesis at mCpG Sites during Replication and Repair. Mol Biol 57, 584–592 (2023). https://doi.org/10.1134/S0026893323040155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893323040155

Keywords:

Navigation