Skip to main content
Log in

Identification of Clinical Isolates of the Bacillus cereus Group and Their Characterization by Mass Spectrometry and Electron Microscopy

  • GENOMICS. TRANSCRIPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

AbstractBacillus cereus is a spore-forming bacterium found in the environment mainly in soil. Bacillus spores are known to be extremely resistant not only to environmental factors, but also to various sanitation regimes. This leads to spore contamination of toxin-producing strains in hospital and food equipment and, therefore, poses a great threat to human health. Two clinical isolates identified as B. cereus and B. cytotoxicus were used in the present work. It was shown that their calcium ion content was significantly lower than that of the reference strains. According to electron microscopy, one of the SRCC 19/16 isolates has an enlarged exosporium, and the SRCC 1208 isolate has large electron-dense inclusions of an unclear nature during sporulation. We can assume that these contain a biologically active component with a cytotoxic effect and possibly play a role in pathogenesis. Comparative chemical, biochemical, physiological, and ultrastructural analysis of spores of clinical isolates and reference strains of B. cereus was performed. The results we obtained deepen our understanding of the properties of spores that contribute to the increased pathogenicity of B. cereus group species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Savini V. 2016. In The Diverse Faces of Bacillus cereus. Savini V., Ed. Elsvier: Academic Press, pp. 73–84.

  2. Kuroki R., Kawakami K., Qin L., Kaji C., Watanabe K., Kimura Y., Ishiguro C., Tanimura S., Tsuchiya Y., Hamaguchi I., Sakakura M., Sakabe S., Tsuji K., Inoue M., Watanabe H. 2009. Nosocomial bacteremia caused by biofilm-forming Bacillus cereus and Bacillus thuringiensis. Intern. Med. 48 (10), 791–796.

    Article  PubMed  Google Scholar 

  3. Elshaghabee F.M.F., Rokana N., Gulhane R.D., Sharma C., Panwar H. 2017. Bacillus as potential probiotics: status, concerns, and future perspectives. Front. Microbiol. 8, 1490.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bundy J.G., Willey T.L., Castell R.S., Ellar D.J., Brindle K.M. 2005. Discrimination of pathogenic clinical isolates and laboratory strains of Bacillus cereus by NMR-based metabolomic profiling. FEMS Microbiol. Lett. 242 (1), 127–136.

    Article  CAS  PubMed  Google Scholar 

  5. Smirnova T.A., Zubasheva M.V., Shevlyagina N.V., Nikolaenko M.A., Azizbekyan R.R. 2013. Electron microscopy of the surfaces of Bacillus spores. Microbiology. 82 (6), 713–720.

    Article  CAS  Google Scholar 

  6. Stewart G.C. 2015. The exosporium layer of bacterial spores: a connection to the environment and the infected host. Microbiol. Mol. Biol. Rev. 79 (4), 437–457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ball D.A., Taylor R., Todd S.J., Redmond C., Couture-Tosi E., Sylvestre P., Moir A., Bullough P.A. 2008. Structure of the exosporium and sublayers of spores of the Bacillus cereus family revealed by electron crystallography. Mol. Microbiol. 68 (4), 947–958.

    Article  CAS  PubMed  Google Scholar 

  8. Smirnova T.A., Poglazova M.N., Nikolaenko M.A., Azizbekyan R.R. 2000. The adhesion characteristics of Bacillus thuringiensis. Biotechnologia. 3, 16–26.

    Google Scholar 

  9. Hoa N.T., Baccigalupi L., Huxham A., Smertenko A., Van P.H., Ammendola S., Ricca E., Cutting A.S. 2000. Characterization of Bacillus species used for oral bacteriotherapy and bacterioprophylaxis of gastrointestinal disorders. Appl. Environ. Microbiol. 66 (12), 5241–5247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Daffonchio D., Raddadi N., Merabishvili M., Cherif A., Carmagnola L., Brusetti L., Rizzi A., Chanishvili N., Visca P., Sharp R., Borin S. 2006. Strategy for identification of Bacillus cereus and Bacillus thuringiensis strains closely related to Bacillus anthracis. Appl. Environ. Microbiol. 72 (2), 1295–1301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chelliah R., Wei S., Park B.J., Kim S.H., Park D.S., Kim S.H., Hwan K.S., Oh D.H. 2017. Novel motB as a potential predictive tool for identification of B. cereus, B. thuringiensis and differentiation from other Bacillus species by triplex real-time PCR. Microb. Pathog. 111, 22–27.

    Article  CAS  PubMed  Google Scholar 

  12. Olsen J.S., Skogan G., Fykse E.M., Rawlinson E.L., Tomaso H., Granum P.E., Blatny J.M. 2007. Genetic distribution of 295 Bacillus cereus group members based on adk-screening in combination with MLST (Multilocus Sequence Typing) used for validating a primer targeting a chromosomal locus in B. anthracis. J. Microbiol. Methods. 71 (3), 265–274.

    Article  CAS  PubMed  Google Scholar 

  13. Phillips A.P., Ezzell J.W. 1989. Identification of Bacillus anthracis by polyclonal antibodies against extracted vegetative cell antigens. J. Appl. Bacteriol. 66 (5), 419–432.

    Article  CAS  PubMed  Google Scholar 

  14. Clark A.E., Kaleta E.J., Arora A., Wolk D.M. 2013. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin. Microbiol. Rev. 26 (3), 547–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Keys C.J., Dare D.J., Sutton H., Wells G., Lunt M., McKenna T., McDowall M., Shah H.N. 2004. Compilation of a MALDI-TOF mass spectral database for the rapid screening and characterisation of bacteria implicated in human infectious diseases. Infect. Genet. Evol. 4 (3), 221–242.

    Article  CAS  PubMed  Google Scholar 

  16. Laue M., Fulda G. 2013. Rapid and reliable detection of bacterial endospores in environmental samples by diagnostic electron microscopy combined with X-ray microanalysis. J. Microbiol. Methods. 94 (1), 13–21.

    Article  CAS  PubMed  Google Scholar 

  17. Vasil'chenko A.S., Yarullina D.R., Nikiyan A.N., Teslya A.V. 2012. Morphofunctional characteristics of Bacillus cereus bacteria at different stages of the life cycle. Vestn. Orenburg. Gos. Univ. 10 (146), 66–71.

    Google Scholar 

  18. Kim K., Seo J., Wheeler K., Park C., Kim D., Park S., Kim W., Chung S.I., Leighton T. 2005. Rapid genotypic detection of Bacillus anthracis and the Bacillus cereus group by multiplex real-time PCR melting curve analysis. FEMS Immunol. Med. Microbiol. 43 (2), 301–310.

    Article  CAS  PubMed  Google Scholar 

  19. Abriouel H., Ben Omar N., Lucas Lopez R., Martinez Canamero M., Ortega E., Galvez A. 2007. Differentiation and characterization by molecular techniques of Bacillus cereus group isolates from poto poto and degue, two traditional cereal-based fermented foods of Burkina Faso and Republic of Congo. J. Food Prot. 70 (5), 1165–1173.

    Article  CAS  PubMed  Google Scholar 

  20. Hsieh Y.M., Sheu S.J., Chen Y.L., Tsen H.Y. 1999. Enterotoxigenic profiles and polymerase chain reaction detection of Bacillus cereus group cells and B. cereus strains from foods and food-borne outbreaks. J. Appl. Microbiol. 87 (4), 481–490.

    Article  CAS  PubMed  Google Scholar 

  21. Oliwa-Stasiak K., Molnar C.I., Arshak K., Bartoszcze M., Adley C.C. 2010. Development of a PCR assay for identification of the Bacillus cereus group species. J. App-l. Microbiol. 108 (1), 266–273.

    Article  CAS  Google Scholar 

  22. Ehling-Schulz M., Svensson B., Guinebretiere M.H., Lindback T., Andersson M., Schulz A., Fricker M., Christiansson A., Granum P.E., Martlbauer E., Nguyen-The C., Salkinoja-Salonen M., Scherer S. 2005. Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related strains. Microbiology (Reading). 151 (Pt 1), 183–197.

    Article  CAS  PubMed  Google Scholar 

  23. Morgulis A., Coulouris G., Raytselis Y., Madden T.L., Agarwala R., Schaffer A.A. 2008. Database indexing for production MegaBLAST searches. Bioinformatics. 24 (16), 1757–1764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ito S. 1968. Formaldehyde–glutaraldehyde fixatives containing tri nitro compounds. J. Cell Biol. 39, 168A–169A.

    Google Scholar 

  25. Sauer S., Freiwald A., Maier T., Kube M., Reinhardt R., Kostrzewa M., Geider K. 2008. Classification and identification of bacteria by mass spectrometry and computational analysis. PLoS One. 3 (7), e2843.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liu Y., Lai Q., Goker M., Meier-Kolthoff J.P., Wang M., Sun Y., Wang L., Shao Z. 2015. Genomic insights into the taxonomic status of the Bacillus cereus group. Sci. Rep. 5, 14082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pauker V.I., Thoma B.R., Grass G., Bleichert P., Hanczaruk M., Zoller L., Zange S. 2018. Improved discrimination of Bacillus anthracis from closely related species in the Bacillus cereus sensu lato group based on matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 56 (5), e01900–e01917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ha M., Jo H.J., Choi E.K., Kim Y., Kim J., Cho H.J. 2019. Reliable identification of Bacillus cereus group species using low mass biomarkers by MALDI-TOF MS. J. Microbiol. Biotechnol. 29 (6), 887–896.

    Article  CAS  PubMed  Google Scholar 

  29. Shu L.-J., Yang Y.-L. 2017. Bacillus classification based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry—effects of culture conditions. Sci. Rep. 7 (1), 15546.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bourque S.N., Valero J.R., Lavoie M.C., Levesque R.C. 1995. Comparative analysis of the 16S to 23S ribosomal intergenic spacer sequences of Bacillus thuringiensis strains and subspecies and of closely related species. App-l. Environ. Microbiol. 61 (4), 1623–1626.

    Article  CAS  Google Scholar 

  31. Guinebretiere M.H., Auger S., Galleron N., Contzen M., De Sarrau B., De Buyser M.L., Lamberet G., Fagerlund A., Granum P.E., Lereclus D., De Vos P., Nguyen-The C., Sorokin A. 2013. Bacillus cytotoxicus sp. nov. is a novel thermotolerant species of the Bacillus cereus group occasionally associated with food poisoning. Int. J. Syst. Evol. Microbiol. 63 (Pt 1), 31–40.

    Article  PubMed  Google Scholar 

  32. Sinnela M.T., Pawluk A.M., Jin Y.H., Kim D., Mah J.H. 2021. Effect of calcium and manganese supplementation on heat resistance of spores of Bacillus species associated with food poisoning, spoilage, and fermentation. Front. Microbiol. 12, 744953.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Teplova V.V., Mikkola R., Tonshin A.A., Saris N.E., Salkinoja-Salonen M.S. 2006. The higher toxicity of cereulide relative to valinomycin is due to its higher affinity for potassium at physiological plasma concentration. Toxicol. Appl. Pharmacol. 210 (1–2), 39–46.

    Article  CAS  PubMed  Google Scholar 

  34. Osman G., Already R., Assaeedi A., Organji S., El-Ghareeb D., Abulreesh H., Althubiani A. 2015. Bioinsecticide Bacillus thuringiensis a comprehensive review. Egyptian J. Biol. Pest Control. 25, 271–288.

    Google Scholar 

  35. Yan M., Roehrl M.H., Wang J.Y. 2007. Discovery of crystalline inclusions in Bacillus licheniformis that resemble parasporal crystals of Bacillus thuringiensis. Can. J. Microbiol. 53 (9), 1111–1115.

    Article  CAS  PubMed  Google Scholar 

  36. Charles J.F., Nielson-LeRoux C., Delecluse A. 1996. Bacillus sphaericus toxins: molecular biology and mode of action. Annu. Rev. Entomol. 41, 451–472.

    Article  CAS  PubMed  Google Scholar 

  37. Park H.-W., Federici B., Sakano Y. 2006. In Inclusion Proteins from Other Insecticidal Bacteria. Shively Jessu-p M., Steinbüchel A., Eds. Berlin: Springer, pp. 321–330.

    Google Scholar 

  38. Mizuki E., Park Y.S., Saitoh H., Yamashita S., Akao T., Higuchi K., Ohba M. 2000. Parasporin, a human leukemic cell-recognizing parasporal protein of Bacillus thuringiensis. Clin. Diagn. Lab. Immunol. 7 (4), 625–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Moiseenko A.V. for technical support, as well as Rubtsov A.V., Rubtsova K.V. and Zolotukhin M.S. for help in preparing the publication. The authors also express their gratitude to the Center for High Precision Genome Editing and Genetic Technologies for Biomedicine of the IMB RAS for the provided computing power and methods for data analysis.

Part of the work was performed on the equipment of the Genome Central Collective Use Center of the IMB RAS (http://www.eimb.ru/RUSSIAN_NEW/INSTITUTE/ccu_ genome_c.php).

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (Contract in the electronic budget system no. 075-10-2021-113, project ID: RF----193021X0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Polyakov.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving humans or animals as research subjects.

Additional information

Abbreviations: MALDI-TOF, matrix assisted laser desorption/ionization–time of flight; TEM, transmission electron microscopy; SEM, scanning electron microscopy; SEM-EDR, scanning electron microscopy–energy dispersive X-ray analysis; MLSA, multilocus sequence analysis; AFLP, amplified fragment length polymorphism.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnova, T.A., Polyakov, N.B., Karpov, D.S. et al. Identification of Clinical Isolates of the Bacillus cereus Group and Their Characterization by Mass Spectrometry and Electron Microscopy. Mol Biol 57, 604–615 (2023). https://doi.org/10.1134/S0026893323040167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893323040167

Keywords:

Navigation