Skip to main content

Advertisement

Log in

A review of odour assessments in the raw rubber processing industry

  • Review
  • Published:
Journal of Rubber Research Aims and scope Submit manuscript

Abstract

Understanding and managing the generation of odour nuisances throughout the raw rubber processing industry are vital to reduce the impact on the community. This paper aims to review literature on odour studies and management in the raw rubber processing industry. The generation of odour is typically associated with microbial reactions occurring in non-rubber components. The most offensive compound groups commonly discussed in the literature are sulfur derivatives and volatile fatty acids due to their unpleasant characteristics and low-odour threshold. Major sources of these odorants are from effluent treatment of the latex processing plant and exhaust gas from the drying process at the block rubber processing plant, respectively. However, studies performed on the composition of rubber emissions also reported the presence of other compound groups such as aldehyde, ester, amine and aromatic, which could potentially contribute to the odour emissions. Single or multiple odour assessment methods can be applied based on the objective of the odour assessment. Olfactory and chemical testings were generally applied to evaluate the odour concentration, offensiveness and identification of potential odorants, while odour wheel and dispersion modelling were employed to assess the impact on the community. Odour legislations mainly used olfactory techniques and dispersion modelling to control the odour emissions by limiting the odour release at a tolerable limit. Numerous mitigation measures have been studied and performed upstream and downstream of rubber processing, such as utilising biological methods and aerated effluent treatment that produces less odour, chemical substitution and installation of wet scrubber to reduce the odour emissions from drying process. Nevertheless, the literature is lacking studies conducted at the industrial scale on odour generation and mitigation where knowledge can be applied to develop an appropriate odour management strategy in the current industrial scenario to mitigate the odour effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Idris NF, Kamarulzaman NH, Nor ZM (2012) Determination of volatile fatty acids from raw natural rubber drying activity by thermal desorption-gas chromatography. Chem Eng Trans 30(1975):175–180. https://doi.org/10.3303/CET1230030

    Article  Google Scholar 

  2. Kamarulzaman N-H, Idris N-F, Nor ZM (2012) Characteristics of odour concentration from rubber processing factories via olfactometry technique. Chem Eng Trans 30(2005):121–126

    Google Scholar 

  3. R Neutra, J Lipscomb, K Satin, D Shusterman (2013) Rates explain around the higher symptom waste. 94:31–38

  4. Basu S, Gu ZC, Shilinsky KA (1998) Application of packed scrubbers for air emissions control in municipal wastewater treatment plants. Environ Prog 17(1):9–18. https://doi.org/10.1002/ep.670170113

    Article  CAS  Google Scholar 

  5. Perng CH, Cheng IL, Wang IC, Chou MS (2011) Ozonation of odorous compounds in gases emitted from rubber processing industries. Aerosol Air Qual Res 11(1):51–58. https://doi.org/10.4209/aaqr.2010.06.0047

    Article  CAS  Google Scholar 

  6. Vaysse L, Bonfils F, Sainte-Beuve J, Cartault M (2012) Natural rubber, 10. doi: https://doi.org/10.1016/B978-0-444-53349-4.00267-3

  7. Mohammadi M, Man HC, Hassan MA, Yee PL (2010) Treatment of wastewater from rubber industry in Malaysia. Afr J Biotechnol 9(38):6233–6243

    CAS  Google Scholar 

  8. Idris NF, Le-Minh N, Hayes JE, Stuetz RM (2022) Performance of wet scrubbers to remove VOCs from rubber emissions. J Environ Manage 305:114426. https://doi.org/10.1016/j.jenvman.2021.114426

    Article  CAS  Google Scholar 

  9. Devaraj V, Nur Fadhilah I, Nor Hidayaty K, Zairossani M (2013) SMR malodour and environmental issues. MRB Rubber Technol Dev 13(1):56–65

    Google Scholar 

  10. Yip E (1990) Rubber properties. J Nat Rubber Res 5(1):52–80

    CAS  Google Scholar 

  11. John A, Nazeer MA, Idicula SP, Thomas V, Annamma Varghese Y (2013) Potential new primary clones of Hevea evolved by ortet selection in India. J Rubber Res 16(2):134–146

    Google Scholar 

  12. Benong M, Nasaruddin M, Aris M, Ghani ZA (2009) Clone 1 Malaysia. Bul Sains Teknol LGM pp 8–10

  13. Ferreira M, Moreno RMB, Goncalves PS, Mattoso LHC (2002) Evaluation of natural rubber clones of Hevea Brasiliensis. Rubber Chem Technol 75(1):171–177

    Article  CAS  Google Scholar 

  14. Intapun J, Sainte-Beuve J, Bonfils F, Tanrattanakul V, Dubreucq E, Vaysse L (2009) Characterisation of natural rubber cup coagula maturation conditions and consequences on dry rubber properties. J Rubber Res 12(4):171–184

    CAS  Google Scholar 

  15. Mokhatar SJ, Daud WN, Zamri NM (2011) Evaluation of Hevea brasiliensis (latex timber clone: RRIM 2001 and RRIM 3001) in relation to different water stress. Am J Agric Biol Sci 6(1):122–127. https://doi.org/10.3844/ajabssp.2011.122.127

    Article  Google Scholar 

  16. Li Y, Lan G, Xia Y (2016) Rubber trees demonstrate a clear retranslocation under seasonal drought and cold stresses. Front Plant Sci 07:1–11. https://doi.org/10.3389/fpls.2016.01907

    Article  Google Scholar 

  17. Cairo P, De Oliveira L, Mesquita A, Cunha R (2015) Seasonal variation in the enzymatic activity of the source-sink system of rubber plants in a clonal garden. J Rubber Res 18(3):139–147

    CAS  Google Scholar 

  18. Ali Shah A, Hasan F, Shah Z, Kanwal N, Zeb S (2013) Biodegradation of natural and synthetic rubbers: a review. Int Biodeterior Biodegrad 83:145–157. https://doi.org/10.1016/j.ibiod.2013.05.004

    Article  CAS  Google Scholar 

  19. Kamarulzaman NH, Le-Minh N, Fisher RM, Stuetz RM (2019) Quantification of VOCs and the development of odour wheels for rubber processing. Sci Total Environ 657:154–168. https://doi.org/10.1016/j.scitotenv.2018.11.451

    Article  CAS  Google Scholar 

  20. Nagata Y (2003) Measurement of odor threshold by triangle odor bag method. Minist Environ Gov Japan, pp. 118–127, [Online]. Available: http://www.env.go.jp/en/air/odor/measure/02_3_2.pdf

  21. Burlingame GA, Suffet IH, Khiari D, Bruchet AL (2004) Development of an odor wheel classification scheme for wastewater. Water Sci Technol 49(9):201–209

    Article  CAS  Google Scholar 

  22. I. Zaid, “Malodour Control in Raw Rubber Processing,” Proc. Rubber Plant. Conf., 2005.

  23. Sakdapipanich and Insom (2006) High-resolution gas spectrometry. Test Meas, pp 382–387

  24. Fisher RM, Le-Minh N, Alvarez-Gaitan JP, Moore SJ, Stuetz RM (2018) Emissions of volatile sulfur compounds (VSCs) throughout wastewater biosolids processing. Sci Total Environ 616–617:622–631. https://doi.org/10.1016/j.scitotenv.2017.10.282

    Article  CAS  Google Scholar 

  25. Muñoz R et al (2010) Monitoring techniques for odour abatement assessment. Water Res 44(18):5129–5149. https://doi.org/10.1016/j.watres.2010.06.013

    Article  CAS  Google Scholar 

  26. Hayes JE, Fisher RM, Stevenson RJ, Mannebeck C, Stuetz RM (2017) Unrepresented community odour impact: improving engagement strategies. Sci Total Environ 609:1650–1658. https://doi.org/10.1016/j.scitotenv.2017.08.013

    Article  CAS  Google Scholar 

  27. Gan LM, Poh CT, Goh HB (1975) Malodorous vapours from a natural rubber processing factory. Int Rubber Conf, pp 389–398

  28. Fulton WS (1993) Comment avoiding the problems of odour during rubber processing. Rubber Dev 46(3):35–37

    Google Scholar 

  29. Ming YW, Fook Y, Singh MM, John CK (1985) Characterisation and treatment of air pollutants from remilling SMR factories. Proc Int Rubber Conf pp. 209–221

  30. Juntarachat N et al (2013) Identification by GC-O and GC-MS of new odorous compounds in natural rubber. J Appl Polym Sci 130(3):1863–1872. https://doi.org/10.1002/app.39356

    Article  CAS  Google Scholar 

  31. Salomez M et al (2014) Micro-organisms in latex and natural rubber coagula of Hevea brasiliensis and their impact on rubber composition, structure and properties. J Appl Microbiol 117(4):921–929. https://doi.org/10.1111/jam.12556

    Article  CAS  Google Scholar 

  32. Heisey RM, Papadatos S (1995) Isolation of microorganisms able to metabolize purified natural rubber. Appl Environ Microbiol 61(8):3092–3097

    Article  CAS  Google Scholar 

  33. Berekaa MM, Linos A, Reichelt R, Keller U, Steinbüchel A (2000) Effect of pretreatment of rubber material on its biodegradability by various rubber degrading bacteria. FEMS Microbiol Lett 184(2):199–206. https://doi.org/10.1016/S0378-1097(00)00048-3

    Article  CAS  Google Scholar 

  34. Intapun J, Sainte-Beuve J, Bonfils F, Tanrattanakul V, Dubreucq E, Vaysse L (2010) Effect of microorganisms during the initial coagulum maturation of hevea natural rubber. J Appl Polym Sci 118(3):1341–1348. https://doi.org/10.1002/app.32331

    Article  CAS  Google Scholar 

  35. Ruth JH (1986) Odor thresholds and irritation levels of several chemical substances: a review. Am Ind Hyg Assoc J 47(3):142. https://doi.org/10.1080/15298668691389595

    Article  Google Scholar 

  36. Rappert S, Müller R (2005) Microbial degradation of selected odorous substances. Waste Manag 25(9):940–954. https://doi.org/10.1016/j.wasman.2005.07.015

    Article  CAS  Google Scholar 

  37. Idris NF, Nor ZM (2011) Identification of sulphur compound as malodour pollutants from natural rubber drying activity by thermal desorption gas chromatography. Malaysian Anal Chem Symp

  38. Zairossani MN, Devaraj V, Zaid I (2005) Modern approaches towards effective effluent treatment. Proc. Rubber Plant. Conf

  39. Hoven VP, Rattanakaran K, Tanaka Y (2003) Determination of chemical components that cause malodour from natural rubber. Rubber Chem Technol 76:508–520

    Article  Google Scholar 

  40. Tekasakul P, Tekasakul S (2006) Environmental problems related to natural rubber production in Thailand. J Aerosol Res 21(2):122–129. https://doi.org/10.11203/jar.21.122

    Article  CAS  Google Scholar 

  41. MRB (2010) Natural rubber processing. Chapter 10, pp. 315–362

  42. Idris NF, Kamarulzaman NH, Mohd Nor Z (2017) Odour dispersion modelling for raw rubber processing factories. J Rubber Res 20(4):223–241

    Article  CAS  Google Scholar 

  43. Isa Z (1993) Control of malodour in SMR factories. Plant Bull 215:56–63

    Google Scholar 

  44. Danteravanich S, Yonglaoyong S, Sridang P, Wisunthorn S, Penjamras P (2007) Preliminary characterisation of organic compounds cause malodour of STR-20 industry. CRRI & IRRDB International Rubber Conference, pp. 556–563

  45. Kamarulzaman NH, Le-Minh N, Stuetz RM (2019) Identification of VOCs from natural rubber by different headspace techniques coupled using GC-MS. Talanta 191:535–544. https://doi.org/10.1016/j.talanta.2018.09.019

    Article  CAS  Google Scholar 

  46. Idris NF (2016) Sustaining SMR processing industry via effective odour management. MRB Rubber Technol Dev 16(1):58–63

    Google Scholar 

  47. Alias FH, Idris NF, Mohammad MI (2017) Overview on performance of water scrubber system in reducing odour at raw natural rubber processing factories in Malaysia. ESTEEM Acad J 13:167–175

    Google Scholar 

  48. Lebrero R, Bouchy L, Stuetz R, Muǹoz R (2011) Odor assessment and management in wastewater treatment plants: a review. 41:10. doi: https://doi.org/10.1080/10643380903300000.

  49. Fisher RM, Barczak RJ, Suffet IHM, Hayes JE, Stuetz RM (2018) Framework for the use of odour wheels to manage odours throughout wastewater biosolids processing. Sci Total Environ 634:214–223. https://doi.org/10.1016/j.scitotenv.2018.03.352

    Article  CAS  Google Scholar 

  50. Brancher M, Griffiths KD, Franco D, de Melo LH (2017) A review of odour impact criteria in selected countries around the world. Chemosphere 168:1531–1570. https://doi.org/10.1016/j.chemosphere.2016.11.160

    Article  CAS  Google Scholar 

  51. Sironi S, Capelli L, Céntola P, Del Rosso R, Pierucci S (2010) Odour impact assessment by means of dynamic olfactometry, dispersion modelling and social participation. Atmos Environ 44(3):354–360. https://doi.org/10.1016/j.atmosenv.2009.10.029

    Article  CAS  Google Scholar 

  52. Malaysian Standard D (2007) Air quality-determination of odour concentration by dynamic olfactometry, MS 1963:20

  53. AS/NZS (2009) AS/NZS 4323: stationary source emission—area source sampling—flux chamber technique. Australian/New Zealand Standard

  54. Woolfenden EA, McClenny WA (1999) Compendium method TO-17. Determination of volatile organic compounds in ambient air using active sampling onto sorbent tubes. Compend Methods Determ Toxic Org Compd Ambient Air p 53

  55. De Melo H, Sivret E, Stuetz RM (2014) Odour regulations—experiences from Australia. 40:181–186. doi: https://doi.org/10.3303/CET1440031

  56. Hayes JE, Stevenson RJ, Stuetz RM (2014) The impact of malodour on communities: a review of assessment techniques. Sci Total Environ 500–501:395–407. https://doi.org/10.1016/j.scitotenv.2014.09.003

    Article  CAS  Google Scholar 

  57. Mannebeck D (2003) Olfactometer. pp 545–551

  58. Sashikala M, Ong H (2015) Analytical techniques for odour assessment. Malay Agric Res Dev Inst 217:217

    Google Scholar 

  59. Federal Government M (2015) Environmental quality (odour) regulations 201X—draft

  60. Mohammad MI, Idris NF, Alias FH (2015) Malodour reduction using water scrubber treatment system. MRB Rubber Technol Dev 16(2):52–57

    Google Scholar 

  61. Qamaruz Zaman N, Othman R (2019) Odour pollution study

  62. Naresh S, Ain Harmiza Abdullah N, Helya Iman Kamaludin N, Afiq Hizami Abdullah M, Fahrurrazi Tompang M (2020) Microbiological removal of hydrogen sulphide from natural rubber latex processing wastewater by Acidithiobacillus thiooxidans strain UniMAP-AIN01. IOP Conf Ser Mater Sci Eng 864:1. https://doi.org/10.1088/1757-899X/864/1/012157

    Article  Google Scholar 

  63. Rattanapan C, Bonsawang P, Kantachote D (2009) Removal of H2S in down-flow GAC biofiltration using sulfide oxidizing bacteria from concentrated latex wastewater. Bioresour Technol 100(1):125–130

    Article  CAS  Google Scholar 

  64. Vuong MD, Couvert A, Couriol C, Amrane A, Le Cloirec P, Renner C (2009) Determination of the Henry’s constant and the mass transfer rate of VOCs in solvents. Chem Eng J 150(2–3):426–430. https://doi.org/10.1016/j.cej.2009.01.027

    Article  CAS  Google Scholar 

  65. Sander R (2015) Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos Chem Phys 15(8):4399–4981. https://doi.org/10.5194/acp-15-4399-2015

    Article  CAS  Google Scholar 

  66. Smet E, Lens P, Van Langenhove H (1998) Treatment of waste gases contaminated with odorous sulfur compounds. Crit Rev Environ Sci Technol 28(1):89–117. https://doi.org/10.1080/10643389891254179

    Article  CAS  Google Scholar 

  67. Sekhar BC (2005) WO2005030808A1 patent reducing rubber odour

  68. Nornanysya FK, Aminah SMS, Azemi S, Dzaraini K, Fathil WYWM (2012) Treatment of odor from natural rubber by using selected antimicrobial agent. SHUSER 2012 - 2012 IEEE Symp Humanit Sci Eng Res, pp 559–564. doi: https://doi.org/10.1109/SHUSER.2012.6268890

  69. Nornanysya FK, Sharifah Aminah SM, Azemi S (2013) Odourless natural rubber (ONR). J Rubber Res 16(1):15–35

    Google Scholar 

  70. Rattanapan W (2015) Odor control in the standard thai rubber 20 (STR 20) industry by using a wet scrubber. Appl Mech Mater 804:275–278. https://doi.org/10.4028/www.scientific.net/amm.804.275

    Article  Google Scholar 

  71. Hoven VP, Rattanakarun K, Tanaka Y (2004) Reduction of offensive odor from natural rubber by odor-reducing substances. J Appl Polym Sci 92(4):2253–2260. https://doi.org/10.1002/app.20188

    Article  CAS  Google Scholar 

  72. Pajarito BB, Castañeda KC, Jeresano SDM, Repoquit DAN (2018) Reduction of offensive odor from natural rubber using zinc-modified bentonite. Adv Mater Sci Eng 2018:1–8. https://doi.org/10.1155/2018/9102825

    Article  CAS  Google Scholar 

  73. Schlegelmilch M, Streese J, Stegmann R (2005) Odour management and treatment technologies: an overview. Waste Manag 25(9):928–939. https://doi.org/10.1016/j.wasman.2005.07.006

    Article  CAS  Google Scholar 

  74. Stanley WBM, Muller CO (2012) Choosing an odor control technology—effectiveness and cost considerations. Proc Water Environ Fed 2002(5):259–276. https://doi.org/10.2175/193864702785140023

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Malaysian Rubber Board for the Ph.D. scholarship and permission to publish this paper. Thank you as well to the PhD supervision team at the University of New South Wales (UNSW), Sydney, Australia who helped with the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nur Fadhilah Idris.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idris, N.F., Kamarulzaman, N.H. A review of odour assessments in the raw rubber processing industry. J Rubber Res 26, 373–389 (2023). https://doi.org/10.1007/s42464-023-00217-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42464-023-00217-3

Keywords

Navigation