Skip to main content

Advertisement

Log in

Comparison of an Argon-Fluoride Gas Laser with a Solid-State Laser for Application to Laser Fusion Energy

  • Review Article
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

With direct symmetric laser illumination of a spherical target, there is the potential for high enough target gains to produce economically viable fusion power. Proposed solutions to the various laser-target physics problems have mostly relied upon modifications to the laser, while keeping the target relatively simple. Necessary but not sufficient laser constraints include a short laser wavelength, very uniform illumination of the target in both high and low spherical perturbation modes, a wide bandwidth, temporal pulse shaping, and a reduction of the focal spot size during the implosion. An electron-beam-pumped argon-fluoride gas laser best satisfies all of these constraints and has the potential for fusion energy gains that far exceed requirements for an economically viable power plant. Various diode-pumped solid-state laser concepts are reviewed. None can simultaneously satisfy most if not all of the constraints. For example, the recently proposed PolyKrōm design produces a set of narrowband discrete wavelengths. The intensity coherence time of this discrete set is too long, and it could not produce the required uniform laser illumination. It is also shown that solid state lasers cannot produce with sufficient efficiency the subnanosecond pulse that is required for the shock-ignition target design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Nuckolls, L. Wood, A. Thiessen, G. Zimmerman, Nature 239, 139 (1972)

    Article  ADS  Google Scholar 

  2. Press release: https://www.llnl.gov/news/national-ignition-facility-achieves-fusion-ignition

  3. A.J. Schmitt, S.P. Obenschain, Phys. Plasmas 30, 012702 (2023). https://doi.org/10.1063/5.0118093

    Article  ADS  Google Scholar 

  4. J. Sethian, M. Friedman, R.H. Lehmberg, M. Myers, S.P. Obenschain, J. Giuliani, P. Kepple, A.J. Schmitt, D. Colombant, J. Gardner et al., Nucl. Fusion 43, 1693 (2003)

    Article  ADS  Google Scholar 

  5. D.T. Goodin, C.R. Gibson, R.W. Petzoldt, N.P. Siegel, L. Thompson, A. Nobile, G.E. Besenbruch, K.R. Schultz, Fusion Eng. Des. 60, 27 (2002)

    Article  Google Scholar 

  6. S.P. Obenschain, D. Colombant, M. Karasik, C.J. Pawley, V. Serlin, A.J. Schmitt, J.L. Weaver, J.H. Gardner, L. Phillips, Y. Aglitskiy et al., Phys. Plasmas 9, 2234 (2002)

    Article  ADS  Google Scholar 

  7. M. Karasik, J. Oh, S.P. Obenschain, A.J. Schmitt, Y. Aglitskiy, C. Stoeckl, Phys. Plasmas 28, 032710 (2021)

    Article  ADS  Google Scholar 

  8. S.E. Bodner, D.G. Colombant, A.J. Schmitt, M. Klapisch, Phys. Plasmas 7, 2298 (2000)

    Article  ADS  Google Scholar 

  9. K.A. Anderson, R. Betti, Phys. Plasmas 10, 4448 (2003)

    Article  ADS  Google Scholar 

  10. N. Metzler, A. Velikovich, A.J. Schmitt, J. Gardner, Phys. Plasmas 9, 5050 (2002)

    Article  ADS  Google Scholar 

  11. R.K. Follett, J.G. Shaw, J.F. Myatt, H. Wen, D.H. Froula, J.P. Palastro, Phys. Plasmas 28, 032103 (2021). https://doi.org/10.1063/5.0037869

    Article  ADS  Google Scholar 

  12. J.W. Bates, R.K. Follett, J.G. Shaw, S.P. Obenschain, J.F. Myatt, M.F. Wolford, D.M. Kehne, M.C. Myers, T.J. Kessler, Phys. Plasmas 30, 052703 (2023). https://doi.org/10.1063/5.0150865

    Article  Google Scholar 

  13. A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, R. Deri, M. Dunne, A. Erlandson, D. Flowers, M. Henesian, J. Latkowski, K. Manes, W. Molander, E. Moses, T. Piggott, S. Powers, S. Rana, S. Rodriguez, R. Sawicki, K. Schaffers, L. Seppala, M. Spaeth, S. Sutton, S. Telford, Fusion Sci Tech 60, 28 (2011)

    Article  ADS  Google Scholar 

  14. A.J. Schmitt, J.W. Bates, S.P. Obenschain, S.T. Zalesak, D.E. Fyfe, Phys. Plasmas 17, 042701 (2010)

    Article  ADS  Google Scholar 

  15. R.H.H. Scott, D. Barlow, W. Trickey, A. Ruocco, K. Glize, L. Antonelli, M. Khan, N.C. Woolsey, Phys. Rev. Lett. 129, 195001 (2022)

    Article  ADS  Google Scholar 

  16. R.H. Lehmberg, J.L. Giuliani, A.J. Schmitt, J. Applied Physics 106, 023103 (2009)

    Article  ADS  Google Scholar 

  17. S.P. Obenschain, A.J. Schmitt, J.W. Bates, M.F. Wolford, M.C. Myers, M.W. McGeoch, M. Karasik, J.L. Weaver, Phil. Trans. R. Soc. A 378, 20200031 (2020). https://doi.org/10.1098/rsta.2020.0031

    Article  ADS  Google Scholar 

  18. R.H. Lehmberg, J. Goldhar, Fusion Tech. 11, 532–541 (1987)

    Article  ADS  Google Scholar 

  19. S.P. Obenschain, S.E. Bodner, D. Colombant, K. Gerber, R.H. Lehmberg, E.A. McLean, A.N. Mostovych, M.S. Pronko, C.J. Pawley, A.J. Schmitt, J.D. Sethian, V. Serlin, J.A. Stamper, C.A. Sullivan, J.P. Dahlburg, J.H. Gardner, Y. Chan, A.V. Deniz, J. Hardgrove, T. Lehecka, M. Klapisch, Phys. Plasmas 3, 2098 (1996)

    Article  ADS  Google Scholar 

  20. P.B. Radha, V.N. Goncharov, M. Hohenberger, T.C. Sangster, R. Betti, R.S. Craxton, D.H. Edgell, R. Epstein, D.H. Froula, J.A. Marozas et al., Direct-drive implosion physics: Results from OMEGA and the national ignition facility. J. Phys. Conf. Ser. 688, 012006 (2016)

    Article  Google Scholar 

  21. D.M. Kehne, M. Karasik, Y. Aglitsky, Z. Smyth, S. Terrell, J.L. Weaver, Y. Chan, R.H. Lehmberg, S.P. Obenschain, Rev. of Sci. Inst. 84, 013509 (2013). https://doi.org/10.1063/1.4789313

    Article  ADS  Google Scholar 

  22. D. Eimerl, E.M. Campbell, W.F. Krupke, J. Zweiback, W.L. Kruer, J. Marozas, J. Zuegel, J. Myatt, J. Kelly, D. Froula, R.L. McCrory, J Fusion Energ 33, 476–488 (2014). https://doi.org/10.1007/s10894-014-9697-2

    Article  Google Scholar 

  23. D. Eimerl, S. Skupsky, J. Myatt, E. M. Campbell J Fusion. Energ 35, 459–469 (2016)

    Google Scholar 

  24. S. Skupsky, R.W. Short, T. Kessler, R.S. Craxton, S. Letzring, J.M. Soures, J. Applied Physics 66, 3456 (1989). https://doi.org/10.1063/1.344101

    Article  ADS  Google Scholar 

  25. S.P. Regan, J.A. Marozas, R.S. Craxton, J.H. Kelly, W.R. Donaldson, P.A. Jaanimagi, D. Jacobs-Perkins, R.L. Keck, T.J. Kessler, D.D. Meyerhofer, T.C. Sangster, W. Seka, V.A. Smalyuk, S. Skupsky, J.D. Zuegel, J. Opt. Soc. Am. B 22, 998 (2005)

    Article  ADS  Google Scholar 

  26. R.H. Lehmberg, J.E. Rothenberg, J. Appl. Physics. 87, 1012 (2000). https://doi.org/10.1063/1.371973

    Article  ADS  Google Scholar 

  27. R.S. Craxton, K.S. Anderson, T.R. Boehly, V.N. Goncharov, D.R. Harding, J.P. Knauer, R.L. McCrory, P.W. McKenty, D.D. Meyerhofer, J.F. Myatt, A.J. Schmitt, J.D. Sethian, R.W. Short, S. Skupsky, W. Theobald, W.L. Kruer, K. Tanaka, R. Betti, T.J.B. Collins, J.A. Delettrez, S.X. Hu, J.A. Marozas, A.V. Maximov, D.T. Michel, P.B. Radha, S.P. Regan, T.C. Sangster, W. Seka, A.A. Solodov, J.M. Soures, C. Stoeckl, J.D. Zuegel, Phys. Plasmas 22, 110501 (2015)

    Article  ADS  Google Scholar 

  28. C. Dorrer, M. Spilatro, S. Herman, T. Borger, E.M. Hill, Opt. Express 29, 16135 (2021)

    Article  ADS  Google Scholar 

  29. R.H. Lehmberg, S.P. Obenschain, Optics Comm. 46, 27 (1983)

    Article  ADS  Google Scholar 

  30. J. D. Zuegel and C. Dorrer, PolyKrōm: Two new broadband laser architectures for laser direct-drive inertial fusion energy (LDD-IFE). Basic Research Needs Workshop on Inertial Fusion Energy, (June 21–23, 2022) https://www.dropbox.com/s/3c76ix6gxfpz6oa/PolyKrom_IFE_BRN_white_paper__Zuegel_FINAL1_.pdf?dl=0

Download references

Acknowledgements

The author gratefully acknowledges many valuable discussions with Jason Bates, Stephen Craxton, Stephen Obenschain, Steve Payne, and Andrew Schmitt.

Funding

The author is retired and did not receive any funding during the writing of this article. However in 2022 the author was a paid consultant to Alion Science and Technology. That company received its funding from the US Naval Research Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

S.B is the sole author of this manuscript.

Corresponding author

Correspondence to Stephen E. Bodner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodner, S.E. Comparison of an Argon-Fluoride Gas Laser with a Solid-State Laser for Application to Laser Fusion Energy. J Fusion Energ 42, 33 (2023). https://doi.org/10.1007/s10894-023-00372-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10894-023-00372-w

Keywords

Navigation