Skip to main content

Advertisement

Log in

Formulation Development of Dual Drug-Loaded Thermosensitive Ocular In Situ Gel Using Factorial Design

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

To overcome the problems of low bioavailability of the drug associated with the short pre-corneal residence time, a thermoresponsive in situ gel system containing poloxamer P407, hydroxypropyl methylcellulose, and chitosan was developed to prolong the pre-corneal residence time of the drug.

Methods

The central composite design was utilized to assess the effects of the concentration of poloxamer 407 hydroxypropyl methylcellulose and chitosan, the concentration of polymer, and the polymer type on the viscosity, pH, and gelation temperature, which were considered indicators of optimum formulations.

Results

After model selection for response analysis, the quadratic model was found to be the best-fitting model for the relationship between independent factors and response variables. As a result of the central composite design, the optimized formulation contained 15.17% poloxamer 407 and 2.141% chitosan. Viscosity 25 °C = 2199.4 ± 26.2, viscosity 35 °C = 15,487.2 ± 117.4, pH = 6.5 ± 0.01, and gelation temperature °C = 33.3 ± 0.47 were obtained. The ex-vivo study revealed that the BRN formulation containing flurbiprofen-cyclodextrin inclusion complex has higher corneal penetration (P < 0.01). The cytotoxicity of ARPE-19 cells and irritation studies, as measured by in situ gel, was found to be acceptable. In lipoxygenase studies, the effectiveness of the BRN formulation was found to be significantly higher than other formulations (P < 0.01).

Conclusions

It is thought that the BRN formulation may be an alternative to the treatment of ocular allergic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Leonardi A, Castegnaro A, Valerio ALG, Lazzarini D. Epidemiology of allergic conjunctivitis: clinical appearance and treatment patterns in a population-based study. Curr Opin Allergy Clin Immunol. 2015;15(5):482–8. https://doi.org/10.1097/ACI.0000000000000204.

    Article  CAS  PubMed  Google Scholar 

  2. Origlieri C, Bielory L. Emerging drugs for conjunctivitis. Expert Opin Emerg Drugs. 2009;14(3):523–36. https://doi.org/10.1517/14728210903103818.

    Article  CAS  PubMed  Google Scholar 

  3. Leonardi A, Capobianco D, Benedetti N, Capobianco A, Cavarzeran F, Scalora T, et al. Efficacy and tolerability of ketotifen in the treatment of seasonal allergic conjunctivitis: comparison between ketotifen 0.025% and 0.05% eye drops. Ocul Immunol Inflamm. 2018;27:1–5. https://doi.org/10.1080/09273948.2018.1530363.

    Article  CAS  Google Scholar 

  4. Luster AD, Tager AM. T-cell trafficking in asthma: lipid mediators grease the way. Nat Rev Immunol. 2004;4(9):711–24. https://doi.org/10.1038/nri1438.

    Article  CAS  PubMed  Google Scholar 

  5. Liu G, Keane-Myers A, Miyazaki D, Tai A, Ono SJ. Molecular and cellular aspects of allergic conjunctivitis. Chem Immunol. 1999;73:39–58. https://doi.org/10.1159/000058748.

    Article  CAS  PubMed  Google Scholar 

  6. Ohnishi H, Miyahara N, Dakhama A, Takeda K, Mathis S, Haribabu B, et al. Corticosteroids enhance CD8+ T cell–mediated airway hyperresponsiveness and allergic inflammation by upregulating leukotriene B4 receptor 1. J Allergy Clin Immunol. 2008;121(4):864-71. e4. https://doi.org/10.1016/j.jaci.2008.01.035.

    Article  CAS  PubMed  Google Scholar 

  7. Achouri D, Alhanout K, Piccerelle P, Andrieu V. Recent advances in ocular drug delivery. Drug Dev Ind Pharm. 2013;39(11):1599–617. https://doi.org/10.3109/03639045.2012.736515.

    Article  CAS  PubMed  Google Scholar 

  8. El-Kamel A. In vitro and in vivo evaluation of Pluronic F127-based ocular delivery system for timolol maleate. Int J Pharm. 2002;241(1):47–55. https://doi.org/10.1016/s0378-5173(02)00234-x.

    Article  CAS  PubMed  Google Scholar 

  9. Giuliano E, Paolino D, Fresta M, Cosco D. Mucosal applications of poloxamer 407-based hydrogels: an overview. Pharmaceutics. 2018;10(3):159. https://doi.org/10.3390/pharmaceutics10030159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dumortier G, Grossiord JL, Agnely F, Chaumeil JC. A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm Res. 2006;23:2709–28. https://doi.org/10.1007/s11095-006-9104-4.

    Article  CAS  PubMed  Google Scholar 

  11. Cirri M, Rangoni C, Maestrelli F, Corti G, Mura P. Development of fast-dissolving tablets of flurbiprofen-cyclodextrin complexes. Drug Dev Ind Pharm. 2005;31(7):697–707. https://doi.org/10.1080/03639040500253694.

    Article  CAS  PubMed  Google Scholar 

  12. Huxley R, Lean M, Crozier A, John J, Neil H. Effect of dietary advice to increase fruit and vegetable consumption on plasma flavonol concentrations: results from a randomised controlled intervention trial. J Epidemiol Community Health. 2004;58(4):288–9. https://doi.org/10.1136/jech.2003.014274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Middleton E, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. P Pharmacol Rev. 2000;52(4):673–751.

    CAS  Google Scholar 

  14. Park H-H, Lee S, Son H-Y, Park S-B, Kim M-S, Choi E-J, et al. Flavonoids inhibit histamine release and expression of proinflammatory cytokines in mast cells. Arch Pharm Res. 2008;31:1303–11. https://doi.org/10.1007/s12272-001-2110-5.

    Article  CAS  PubMed  Google Scholar 

  15. Kimata M, Shichijo M, Miura T, Serizawa I, Inagaki N, Nagai H. Ca2+ and protein kinase C signaling for histamine and sulfidoleukotrienes released from human cultured mast cells. Biochem Biophys Res Commun. 1999;257(3):895–900. https://doi.org/10.1006/bbrc.1999.0557.

    Article  CAS  PubMed  Google Scholar 

  16. Kempuraj D, Madhappan B, Christodoulou S, Boucher W, Cao J, Papadopoulou N, et al. Flavonols inhibit proinflammatory mediator release, intracellular calcium ion levels and protein kinase C theta phosphorylation in human mast cells. Br J Pharmacol. 2005;145(7):934–44. https://doi.org/10.1038/sj.bjp.0706246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Polat HK, Pehlivan SB, Özkul C, Çalamak S, Öztürk N, Aytekin E, et al. Development of besifloxacin HCl loaded nanofibrous ocular inserts for the treatment of bacterial keratitis: in vitro, ex vivo and in vivo evaluation. Int J Pharm. 2020;585:119552. https://doi.org/10.1016/j.ijpharm.2020.119552.

    Article  CAS  PubMed  Google Scholar 

  18. Challa R, Ahuja A, Ali J, Khar R. Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech. 2005;6:E329–57. https://doi.org/10.1208/pt060243.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Aher ND, Nair HA. Bilayered films based on novel polymer derivative for improved ocular therapy of gatifloxacin. Scientific World Journal. 2014;2014:297603. https://doi.org/10.1155/2014/297603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schmolka IR, Artificial skin I. Preparation and properties of Pluronic F-127 gels for treatment of burns. J Biomed Mater Res. 1972;6(6):571–82. https://doi.org/10.1002/jbm.820060609.

    Article  CAS  PubMed  Google Scholar 

  21. POLAT HK, Sedat Ü. Development of besifloxacin HCL loaded ocular in situ gels; in vitro characterization study. J Fac Pharm Ankara. 2023;47(1):39–50. https://doi.org/10.33483/jfpau.1154051.

    Article  Google Scholar 

  22. El-Feky YA, Fares AR, Zayed G, El-Telbany RFA, Ahmed KA, El-Telbany DFA. Repurposing of nifedipine loaded in situ ophthalmic gel as a novel approach for glaucoma treatment. Biomed Pharmacother. 2021;142:112008. https://doi.org/10.1016/j.biopha.2021.112008.

    Article  CAS  PubMed  Google Scholar 

  23. Li J, Li Z, Gao Y, Liu S, Li K, Wang S, et al. Effect of a drug delivery system made of quercetin formulated into PEGylation liposomes on cervical carcinoma in vitro and in vivo. J Nanomater. 2021;2021:1–12.

    Google Scholar 

  24. Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, et al. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010;12(3):263–71. https://doi.org/10.1208/s12248-010-9185-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gamal A, Saeed H, El-Ela FIA, Salem HF. Improving the antitumor activity and bioavailability of sonidegib for the treatment of skin cancer. Pharmaceutics. 2021;13(10). https://doi.org/10.3390/pharmaceutics13101560.

  26. Murtaza G, Ahmad M, Khan SA, Hussain I. Evaluation of cefixime-loaded chitosan microspheres: analysis of dissolution data using DDSolver. Dissolution Technologies. 2012;19(2):13–9. https://doi.org/10.14227/DT190212P13.

    Article  CAS  Google Scholar 

  27. Aldeek F, McCutcheon N, Smith C, Miller JH, Danielson TL. Dissolution testing of nicotine release from OTDN pouches: product characterization and product-to-product comparison. Separations. 2021;8(1):7.

    Article  CAS  Google Scholar 

  28. Polat HK, Kurt N, Aytekin E, Akdağ Çaylı Y, Bozdağ Pehlivan S, Çalış S. Design of besifloxacin HCl-loaded nanostructured lipid carriers: in vitro and ex vivo evaluation. J Ocul Pharmacol Ther. 2022;38(6):412–23. https://doi.org/10.1089/jop.2022.0008.

    Article  CAS  PubMed  Google Scholar 

  29. Natesan S, Sugumaran A, Ponnusamy C, Thiagarajan V, Palanichamy R, Kandasamy R. Chitosan stabilized camptothecin nanoemulsions: development, evaluation and biodistribution in preclinical breast cancer animal mode. Int J Biol Macromol. 2017;104(Pt B):1846–52. https://doi.org/10.1016/j.ijbiomac.2017.05.127.

    Article  CAS  PubMed  Google Scholar 

  30. Waslidge NB, Hayes DJ. A colorimetric method for the determination of lipoxygenase activity suitable for use in a high throughput assay format. Anal Biochem. 1995;231(2):354–8. https://doi.org/10.1006/abio.1995.0063.

    Article  CAS  PubMed  Google Scholar 

  31. Chung LY, Soo WK, Chan KY, Mustafa MR, Goh SH, Imiyabir Z. Lipoxygenase inhibiting activity of some Malaysian plants. Pharm Biol. 2009;47(12):1142–8. https://doi.org/10.3109/13880200903008724.

    Article  Google Scholar 

  32. Wilhelmus KR. The Draize eye test. Surv Ophthalmol. 2001;45(6):493–515. https://doi.org/10.1016/s0039-6257(01)00211-9.

    Article  CAS  PubMed  Google Scholar 

  33. Alpay A, Evren C, Bektaş S, Ugurbas SC, Ugurbas SH, Cınar F. Effects of the folk medicinal plant extract Ankaferd Blood Stopper® on the ocular surface. C Cutan Ocul Toxicol. 2011;30(4):280–5. https://doi.org/10.3109/15569527.2011.565011.

    Article  Google Scholar 

  34. Abdelkader H, Pierscionek B, Alany RG. Novel in situ gelling ocular films for the opioid growth factor-receptor antagonist-naltrexone hydrochloride: fabrication, mechanical properties, mucoadhesion, tolerability and stability studies. Int J Pharm. 2014;477(1–2):631–42. https://doi.org/10.1016/j.ijpharm.2014.10.069.

    Article  CAS  PubMed  Google Scholar 

  35. Pignatello R, Bucolo C, Spedalieri G, Maltese A, Puglisi G. Flurbiprofen-loaded acrylate polymer nanosuspensions for ophthalmic application. Biomaterials. 2002;23(15):3247–55. https://doi.org/10.1016/s0142-9612(02)00080-7.

    Article  CAS  PubMed  Google Scholar 

  36. Ur-Rehman T, Tavelin S, Gröbner G. Effect of DMSO on micellization, gelation and drug release profile of poloxamer 407. Int J Pharm. 2010;394(1–2):92–8. https://doi.org/10.1016/j.ijpharm.2010.05.012.

    Article  CAS  PubMed  Google Scholar 

  37. Yu S, Zhang X, Tan G, Tian L, Liu D, Liu Y, et al. A novel pH-induced thermosensitive hydrogel composed of carboxymethyl chitosan and poloxamer cross-linked by glutaraldehyde for ophthalmic drug delivery. Carbohydr Polym. 2017;155:208–17. https://doi.org/10.1016/j.carbpol.2016.08.073.

    Article  CAS  PubMed  Google Scholar 

  38. Gratieri T, Gelfuso GM, Rocha EM, Sarmento VH, de Freitas O, Lopez RFV. A poloxamer/chitosan in situ forming gel with prolonged retention time for ocular delivery. Eur J Pharm Biopharm. 2010;75(2):186–93. https://doi.org/10.1016/j.ejpb.2010.02.011.

    Article  CAS  PubMed  Google Scholar 

  39. Jiang Q, Zhang P, Li J. Elucidation of colloid performances of thermosensitive in situ–forming ophthalmic gel formed by poloxamer 407 for loading drugs. J Pharm Sci. 2020;109(5):1703–13. https://doi.org/10.1016/j.xphs.2020.01.021.

    Article  CAS  PubMed  Google Scholar 

  40. Dantas M, AGB BS, Camila M, Larissa A. Pedro JRN, Ferdinando AC, Lucindo JQJ, Jackson RG. Development and evaluation of stability of a gel formulation containing the monoterpene borneol. Sci World J. 2016.

  41. Cabana A, Aı̈t-Kadi A, Juhász J. Study of the gelation process of polyethylene oxidea–polypropylene oxideb–polyethylene oxideacopolymer (poloxamer 407) aqueous solutions. J Colloid Interface Sci. 1997;190(2):307–12. https://doi.org/10.1006/jcis.1997.4880.

    Article  CAS  PubMed  Google Scholar 

  42. Timur SS, Şahin A, Aytekin E, Öztürk N, Polat KH, Tezel N, et al. Design and in vitro evaluation of tenofovir-loaded vaginal gels for the prevention of HIV infections. Pharm Dev Technol. 2018;23(3):301–10. https://doi.org/10.1080/10837450.2017.1329835.

    Article  CAS  PubMed  Google Scholar 

  43. Fathalla ZM, Vangala A, Longman M, Khaled KA, Hussein AK, El-Garhy OH, et al. Poloxamer-based thermoresponsive ketorolac tromethamine in situ gel preparations: design, characterisation, toxicity and transcorneal permeation studies. Eur J Pharm Biopharm. 2017;114:119–34. https://doi.org/10.1016/j.ejpb.2017.01.008.

    Article  CAS  Google Scholar 

  44. Ryu J-M, Chung S-J, Lee M-H, Kim C-K, Shim C-K. Increased bioavailability of propranolol in rats by retaining thermally gelling liquid suppositories in the rectum. J Control Release. 1999;59(2):163–72. https://doi.org/10.1016/s0168-3659(98)00189-8.

    Article  CAS  PubMed  Google Scholar 

  45. Wanka G, Hoffmann H, Ulbricht W. Phase diagrams and aggregation behavior of poly (oxyethylene)-poly (oxypropylene)-poly (oxyethylene) triblock copolymers in aqueous solutions. Macromolecules. 1994;27(15):4145–59.

    Article  CAS  Google Scholar 

  46. Abd Elhady SS, Mortada ND, Awad GA, Zaki NM. Development of in situ gelling and muco adhesive mebeverine hydrochloride solution for rectal administration. Saudi Pharm J. 2003;11.

  47. POLAT HK, Sedat Ü. Development of in situ gel formulation containing bisphosphonate-loaded Plga microspheres for bone regeneration in maxillofacial surgery applications; formulations, in vitro characterization and release kinetic studies. J Fac Pharm Ankara. 2022;46(3):993–1008. https://doi.org/10.33483/jfpau.1149890.

    Article  Google Scholar 

  48. Patel A, Cholkar K, Agrahari V, Mitra AK. Ocular drug delivery systems: an overview. World J Pharmacol. 2013;2(2):47–64. https://doi.org/10.5497/wjp.v2.i2.47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wei Y, Li C, Zhu Q, Zhang X, Guan J, Mao S. Comparison of thermosensitive in situ gels and drug-resin complex for ocular drug delivery: in vitro drug release and in vivo tissue distribution. Int J Pharm. 2020;578:119184. https://doi.org/10.1016/j.ijpharm.2020.119184.

    Article  CAS  PubMed  Google Scholar 

  50. Loftsson T, Kristmundsdottir T, Ingvarsdottir K, Olafsdottir B, Baldvinsdóttir J. Preparation and physical evaluation of microcapsules of hydrophilic drug-cyclodextrin complexes. Microencapsul. 1992;9(3):375–82. https://doi.org/10.3109/02652049209021252.

    Article  CAS  Google Scholar 

  51. Sharif N, Golmakani M-T, Niakousari M, Hosseini SMH, Ghorani B, Lopez-Rubio A. Active food packaging coatings based on hybrid electrospun gliadin nanofibers containing ferulic acid/hydroxypropyl-beta-cyclodextrin inclusion complexes. Nanomaterials. 2018;8(11):919. https://doi.org/10.3390/nano8110919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Çulcu Ö, Tunçel E, Tamer Sİ, Tırnaksız FF. Characterization of thermosensitive gels for the sustained delivery of dexketoprofen trometamol for dermal applications. J Gazi Univ Health Sci Inst. 2020;2(2):1–12.

    Google Scholar 

  53. Sanjana A, Ahmed MG, Bh JG. Preparation and evaluation of in-situ gels containing hydrocortisone for the treatment of aphthous ulcer. J Oral Biol Craniofac Res. 2021;11(2):269–76. https://doi.org/10.1016/j.jobcr.2021.02.001.

    Article  Google Scholar 

  54. Aderibigbe BA, Buyana B. Alginate in wound dressings Pharmaceutics. 2018;10(2):42. https://doi.org/10.3390/pharmaceutics10020042.

    Article  CAS  PubMed  Google Scholar 

  55. Hirun N, Kraisit P, Tantishaiyakul V. Thermosensitive polymer blend composed of poloxamer 407, poloxamer 188 and polycarbophil for the use as mucoadhesive in situ gel. Polymers. 2022;14(9):1836. https://doi.org/10.3390/polym14091836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ainurofiq A, Choiri S. Drug release mechanism of slightly soluble drug from nanocomposite matrix formulated with zeolite/hydrotalcite as drug carrier. Trop J Pharm Res. 2015;14(7):1129–35.

    Article  CAS  Google Scholar 

  57. Destruel P-L, Zeng N, Brignole-Baudouin F, Douat S, Seguin J, Olivier E, et al. In situ gelling ophthalmic drug delivery system for the optimization of diagnostic and preoperative mydriasis: in vitro drug release, cytotoxicity and mydriasis pharmacodynamics. Pharmaceutics. 2020;12(4):360. https://doi.org/10.3390/pharmaceutics12040360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vasconcelos A, Vega E, Pérez Y, Gómara MJ, García ML, Haro I. Conjugation of cell-penetrating peptides with poly(lactic-co-glycolic acid)-polyethylene glycol nanoparticles improves ocular drug delivery. Int J Nanomedicine. 2015;10:609–31.

    PubMed  PubMed Central  Google Scholar 

  59. Olchawa MM, Krzysztynska-Kuleta OI, Mokrzynski KT, Sarna PM, Sarna TJ. Quercetin protects ARPE-19 cells against photic stress mediated by the products of rhodopsin photobleaching. Photochem Photobiol Sci. 2020;19(8):1022–34. https://doi.org/10.1039/d0pp00165a.

    Article  CAS  PubMed  Google Scholar 

  60. Hayes S, Morgan SnR, O’Brart DP, O’Brart N, Meek KM. A study of stromal riboflavin absorption in ex vivo porcine corneas using new and existing delivery protocols for corneal cross‐linking. Acta Ophthalmol. 2016;94(2):e109–17. https://doi.org/10.1111/aos.12884.

    Article  CAS  PubMed  Google Scholar 

  61. Gratieri T, Gelfuso GM, de Freitas O, Rocha EM, Lopez RF. Enhancing and sustaining the topical ocular delivery of fluconazole using chitosan solution and poloxamer/chitosan in situ forming gel. Eur J Pharm Biopharm. 2011;79(2):320–7. https://doi.org/10.1016/j.ejpb.2011.05.006.

    Article  CAS  PubMed  Google Scholar 

  62. Wen Y, Ban J, Mo Z, Zhang Y, An P, Liu L, et al. A potential nanoparticle-loaded in situ gel for enhanced and sustained ophthalmic delivery of dexamethasone. Nanotechnology. 2018;29(42):425101. https://doi.org/10.1088/1361-6528/aad7da.

    Article  CAS  PubMed  Google Scholar 

  63. Mishra GP, Tamboli V, Jwala J, Mitra AK. Recent patents and emerging therapeutics in the treatment of allergic conjunctivitis. Recent Pat Inflamm Allergy Drug Discov. 2011;5(1):26–36. https://doi.org/10.2174/187221311794474883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pokharkar V, Patil V, Mandpe L. Engineering of polymer-surfactant nanoparticles of doxycycline hydrochloride for ocular drug delivery. Drug Deliv. 2015;22(7):955–68. https://doi.org/10.3109/10717544.2014.893381.

    Article  CAS  PubMed  Google Scholar 

  65. Agnihotri SM, Vavia PR. Diclofenac-loaded biopolymeric nanosuspensions for ophthalmic application. Nanomedicine. 2009;5(1):90–5. https://doi.org/10.1016/j.nano.2008.07.003.

    Article  CAS  PubMed  Google Scholar 

  66. Gonzalez-Mira E, Egea MA, Garcia ML, Souto EB. Design and ocular tolerance of flurbiprofen loaded ultrasound-engineered NLC. Colloids Surf B Biointerfaces. 2010;81(2):412–21. https://doi.org/10.1016/j.colsurfb.2010.07.029.

    Article  CAS  PubMed  Google Scholar 

  67. Hiremath SSP, Dasankoppa FS, Nadaf A, Jamakandi VG, Mulla JS, Sholapur HN. Formulation and evaluation of a novel in situ gum based ophthalmic drug delivery system of linezolid. Sci Pharm. 2008;76(3):515–32. https://doi.org/10.3797/scipharm.0803-17.

    Article  CAS  Google Scholar 

  68. POLAT HK. Design of metformin HCl and moxifloxacin HCl loaded thermosensitive in situ gel. J Res Pharm. 2022;26(5). https://doi.org/10.29228/jrp.215.

  69. Yavuz B, Pehlivan SB, Vural İ, Ünlü N. In vitro/in vivo evaluation of dexamethasone—PAMAM dendrimer complexes for retinal drug delivery. J Pharm Sci. 2015;104(11):3814–23. https://doi.org/10.1002/jps.24588.

    Article  CAS  PubMed  Google Scholar 

  70. Araújo J, Nikolic S, Egea MA, Souto EB, Garcia ML. Nanostructured lipid carriers for triamcinolone acetonide delivery to the posterior segment of the eye. Colloids Surf, B. 2011;88(1):150–7. https://doi.org/10.1016/j.colsurfb.2011.06.025.

    Article  CAS  Google Scholar 

  71. Kapadia R, Parikh K, Jain M, Sawant K. Topical instillation of triamcinolone a cetonide-loaded e mulsomes for posterior ocular delivery: statistical optimization and in vitro-in vivo studies. Drug Deliv Transl Res. 2021;11:984–99. https://doi.org/10.1007/s13346-020-00810-8.

    Article  CAS  PubMed  Google Scholar 

  72. Kang S-S, Ha S-J, Kim E-S, Shin J-A, Kim JY, Tchah H. Effect of nerve growth factor on the in vitro induction of apoptosis of human conjunctival epithelial cells by hyperosmolar stress. Invest Ophthalmol Vis Sci. 2014;55(1):535–41. https://doi.org/10.1167/iovs.13-12459.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

H.K.P., A.A., S.Ü., and E.A. approved the idea/concept and design. H.K.P. and A.A. contributed to the supervision/consultancy. H.K.P., A.A., S.Ü., E.A., M.K.H., S.G., N.F.K., and B.M. contributed to the data collection and/or processing and writing of the article. H.K.P., A.A., S.Ü., E.A., M.K.H., and S.G. performed the analysis and/or comment. H.K.P., A.A., S.Ü., E.A., M.K.H., S.G., N.F.K., and B.M. performed the source scan. H.K.P., A.A., S.Ü., E.A., M.K.H., S.G., N.F.K., and B.M. contributed to the critical review, resources, and funding.

Corresponding author

Correspondence to Heybet Kerem Polat.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 758 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polat, H.K., Arslan, A., Ünal, S. et al. Formulation Development of Dual Drug-Loaded Thermosensitive Ocular In Situ Gel Using Factorial Design. J Pharm Innov 18, 768–788 (2023). https://doi.org/10.1007/s12247-023-09762-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-023-09762-1

Keywords

Navigation