Skip to main content
Log in

Design and fabrication of novel coordination polymers containing Co(II), Ni(II), and Cu(II) for electrochemical detection of both ascorbic acid and Cr(VI)

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

For the rapid detection of ascorbic acid (AA) and Cr(VI), three novel 2D coordination polymers (CP) with different metal centers [Co(L)(5-NIPA)(H2O)]·H2O (1), [Ni(L)(5-NIPA)(H2O)]·H2O (2) and [Cu(L)(5-NIPA)]·H2O (3) were synthesized by the traditionally hydrothermal method (L = N,N′-bis(pyridine-3-ylmethyl)-4-(4-carboxybenzyl)oxybenzamide, 5-NIPA = 5-nitroisophthalic acid). CPs 1 and 2 are isomorphic 2D regular (4,4)-connected networks, and CP 3 has a twisted 2D lamellar structure. All of the above complexes present highly sensitive and selective electrocatalytic sensing performances for AA and Cr(VI). The detection limits of the three complexes were 0.320, 3.360 and 3.600 μM for AA, and 0.2349, 0.9928 and 3.6054 μM for Cr(VI), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Meister A (1992) On the antioxidant effects of ascorbic acid and glutathione. Biochem Pharmacol 44:1905–1915

    Article  CAS  PubMed  Google Scholar 

  2. Chen Q, Espey MG, Sun AY, Pooput C, Kirk KL, Krishna MC, Khosh DB, Drisko J, Levine M (2008) Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proc Natl Acad Sci 105:11105–11109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Guo X, Yue G, Huang J, Liu C, Zeng Q, Wang L (2018) Label-free simultaneous analysis of Fe(III) and ascorbic acid using fluorescence switching of ultrathin graphitic carbon nitride nanosheets. ACS Appl Mater Interfaces 10:26118–26127

    Article  CAS  PubMed  Google Scholar 

  4. Dayan AD, Paine AJ (2001) Mechanisms of chromium toxicity, carcinogenicity and allergenicity: review of the literature from 1985 to 2000. Hum Exp Toxicol 20:439–451

    Article  CAS  PubMed  Google Scholar 

  5. Pavesi T, Moreira JC (2020) Mechanisms and individuality in chromium toxicity in humans. J Appl Toxicol 40:1183–1197

    Article  CAS  PubMed  Google Scholar 

  6. Li Y, Javed R, Li R, Zhang Y, Lang Z, Zhao H, Liu X, Cao H, Ye D (2023) A colorimetric smartphone-based sensor for on-site AA detection in tropical fruits using Fe-P/NC single-atom nanoenzyme. Food Chem 406:135017

    Article  CAS  PubMed  Google Scholar 

  7. Salem MAS, Khan AM, Manea YK, Qashqoosh MTA, Alahdal FAM (2023) Highly efficient iodine capture and ultrafast fluorescent detection of heavy metals using PANI/LDH@CNT nanocomposite. J Hazard Mater 447:130732

    Article  CAS  PubMed  Google Scholar 

  8. Gökmen V, Kahraman N, Demir N, Acar J (2000) Enzymatically validated liquid chromatographic method for the determination of ascorbic and dehydroascorbic acids in fruit and vegetables. J Chromatogr A 881:309–316

    Article  PubMed  Google Scholar 

  9. Ferreira LMR, Cunha-Oliveira T, Sobral MC, Abreu PL, Alpoim MC, Urbano AM (2019) Impact of carcinogenic chromium on the cellular response to proteotoxic stress. Int J Mol Sci 20:4901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bodylska W, Fandzloch M, Szukiewicz R, Lukowiak A (2022) Cation-exchange in metal-organic framework as a strategy to obtain new material for ascorbic acid detection. Nanomaterials (Basel) 12:4480

    Article  CAS  PubMed  Google Scholar 

  11. Guo L, Liu Y, Kong R, Chen G, Liu Z, Qu F, Xia L, Tan W (2019) A Metal-organic framework as selectivity regulator for Fe3+ and ascorbic acid detection. Anal Chem 91:12453–12460

    Article  CAS  PubMed  Google Scholar 

  12. Yue D, Zhao D, Zhang J, Zhang L, Jiang K, Zhang X, Cui Y, Yang Y, Chen B, Qian G (2017) A luminescent cerium metal-organic framework for the turn-on sensing of ascorbic acid. Chem Commun 53:11221–11224

    Article  CAS  Google Scholar 

  13. Menon S, Usha SP, Manoharan H, Kishore PVN, Sai VVR (2023) Metal-organic framework-based fiber optic sensor for chromium(VI) detection. ACS Sens 8:684–693

    Article  CAS  PubMed  Google Scholar 

  14. Li Z-J, Ju Y, Wu X-L, Li X, Qiu J, Li Y, Zhang Z-H, He M-Y, Zhang L, Wang J-Q, Lin J (2023) Topological control of metal–organic frameworks toward highly sensitive and selective detection of chromate and dichromate. Inorg Chem Front 10:1721–1730

    Article  CAS  Google Scholar 

  15. Ranjith Kumar D, Karthik R, Dhakal G, Nguyen VQ, Lee J, Shim J-J (2022) Catechol redox couple functionalized metal-organic framework UiO-66-NH2 as an efficient catalyst for chromium ion sensor in water samples. J Clean Prod 374:133731

    Article  CAS  Google Scholar 

  16. Lee HJ, Cho W, Jung S, Oh M (2009) Morphology-selective formation and morphology-dependent gas-adsorption properties of coordination polymer particles. Adv Mater 21:674–677

    Article  CAS  Google Scholar 

  17. Liu GC, Li Y, Chi J, Xu N, Wang XL, Lin HY, Chen YQ (2020) Multi-functional fluorescent responses of cobalt complexes derived from functionalized amide-bridged ligand. Dyes Pigm 174:108064

    Article  CAS  Google Scholar 

  18. Ohtani R, Yoneda K, Furukawa S, Horike N, Kitagawa S, Gaspar AB, Muñoz MC, Real JA, Ohba M (2011) Precise control and consecutive modulation of spin transition temperature using chemical migration in porous coordination polymers. J Am Chem Soc 133:8600–8605

    Article  CAS  PubMed  Google Scholar 

  19. Kempahanumakkagari S, Vellingiri K, Deep A, Kwon EE, Bolan N, Kim K-H (2018) Metal–organic framework composites as electrocatalysts for electrochemical sensing applications. Coord Chem Rev 357:105–129

    Article  CAS  Google Scholar 

  20. Yang L, Zhang Z, Zhang C, Li S, Liu G, Wang X (2022) An excellent multifunctional photocatalyst with a polyoxometalate–viologen framework for CEES oxidation, Cr(vi) reduction and dye decolorization under different light regimes. Inorg Chem Front 9:4824–4833

    Article  CAS  Google Scholar 

  21. Karmakar A, Hazra S, Pombeiro AJL (2022) Urea and thiourea based coordination polymers and metal-organic frameworks: synthesis, structure and applications. Coord Chem Rev 453:214314

    Article  CAS  Google Scholar 

  22. Wu H, Shen Q, Dong J, Zhang G, Sun F, Li R (2022) Anion-regulated cobalt coordination polymer: construction, electrocatalytic hydrogen evolution and L-cysteine electrochemical sensing. Electrochim Acta 420:140442

    Article  CAS  Google Scholar 

  23. Yan T, Zhang X-Y, Zhao Y, Sun W-Y (2023) Stable Zr(iv) coordination polymers with electroactive metal-terpyridine units for enhanced electrochemical sensing dopamine. J Mater Chem A 11:268–275

    Article  CAS  Google Scholar 

  24. Zhang D, Zhang J, Zhang R, Shi H, Guo Y, Guo X, Li S, Yuan B (2015) 3D porous metal-organic framework as an efficient electrocatalyst for nonenzymatic sensing application. Talanta 144:1176–1181

    Article  CAS  PubMed  Google Scholar 

  25. Zhou B, Liang L-M, Yao J (2015) Nanoflakes of an aminoacid-based chiral coordination polymer: synthesis, optical and electrochemical properties, and application in electrochemical sensing of H2O2. J Solid State Chem 223:152–155

    Article  CAS  Google Scholar 

  26. Dong S, Suo G, Li N, Chen Z, Peng L, Fu Y, Yang Q, Huang T (2016) A simple strategy to fabricate high sensitive 2,4-dichlorophenol electrochemical sensor based on metal organic framework Cu3(BTC)2. Sens Actuators, B Chem 222:972–979

    Article  CAS  Google Scholar 

  27. Ehrhard AA, Gunkel L, Jäger S, Sell AC, Nagata Y, Hunger J (2022) Elucidating conformation and hydrogen-bonding motifs of reactive thiourea intermediates. ACS Catal 12:12689–12700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang L, Wang F, Auphedeous DY, Feng C (2019) Achiral isomers controlled circularly polarized luminescence in supramolecular hydrogels. Nanoscale 11:14210–14215

    Article  CAS  PubMed  Google Scholar 

  29. Yang Y, Tu C, Liu Z, Wang J, Yang X, Cheng F (2021) 5-Nitro-isophthalic acid based Co(II)-coordination polymers: structural diversity tuned by imidazolyl ligands, efficient dye degradation and luminescence sensing. Polyhedron 206:115339

    Article  CAS  Google Scholar 

  30. Wang J-M, Zhang P-F, Cheng J-G, Wang Y, Ma L-L, Yang G-P, Wang Y-Y (2021) Luminescence tuning and sensing properties of stable 2D lanthanide metal–organic frameworks built with symmetrical flexible tricarboxylic acid ligands containing ether oxygen bonds. CrystEngComm 23:411–418

    Article  CAS  Google Scholar 

  31. Gu X, Xue D (2006) Selected controlled synthesis of three-dimensional 4d–f heterometallic coordination frameworks by lanthanide carboxylate subunits and silver centers. Cryst Growth Des 6:2551–2557

    Article  CAS  Google Scholar 

  32. Okada K, Mori K, Fukatsu A, Takahashi M (2021) Oriented growth of semiconducting TCNQ@Cu3(BTC)2 MOF on Cu(OH)2: crystallographic orientation and pattern formation toward semiconducting thin-film devices. J Mater Chem A 9:19613–19618

    Article  CAS  Google Scholar 

  33. Patra AK, Mukherjee R (1999) Bivalent, trivalent, and tetravalent nickel complexes with a common tridentate deprotonated pyridine bis-amide ligand. Molecular structures of nickel(II) and nickel(IV) and redox activity. Inorg Chem 38:1388–1393

    Article  CAS  Google Scholar 

  34. Pandey S, Das PP, Singh AK, Mukherjee R (2011) Cobalt(II), nickel(II) and copper(II) complexes of a hexadentate pyridine amide ligand. Effect of donor atom (ether vs. thioether) on coordination geometry, spin-state of cobalt and M(III)-M(II) redox potential. Dalton Trans 40:10758–10768

    Article  CAS  PubMed  Google Scholar 

  35. Salimi A, Alizadeh V, Hadadzadeh H (2004) Renewable surface sol-gel derived carbon ceramic electrode modified with copper complex and its application as an amperometric sensor for bromate detection. Electroanalysis 16:1984–1991

    Article  CAS  Google Scholar 

  36. Antonio MR, Chiang M-H (2008) Stabilization of plutonium(III) in the preyssler polyoxometalate. Inorg Chem 47:8278–8285

    Article  CAS  PubMed  Google Scholar 

  37. Gaikar PS, Navale ST, Jadhav VV, Shinde PV, Dubal DP, Arjunwadkar PR, Stadler FJ, Naushad M, Ghfar AA, Mane RS (2017) A simple wet-chemical synthesis, reaction mechanism, and charge storage application of cobalt oxide electrodes of different morphologies. Electrochim Acta 253:151–162

    Article  CAS  Google Scholar 

  38. McCord CP, Summers B, Henry CS (2021) Redox behavior and surface morphology of polystyrene thermoplastic electrodes. Electrochim Acta 393:139069

    Article  CAS  Google Scholar 

  39. Li C, Shen J, Wu K, Yang N (2022) Metal centers and organic ligands determine electrochemistry of metal-organic frameworks. Small 18:2106607

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21401010, 21971024, 22271021, 22201021), Education Department and the Natural Science Foundations of Liaoning province (LJ2020008, 2021-MS-312) and the Doctoral Scientific Research Foundation of Liaoning Province (2022-BS-302).

Author information

Authors and Affiliations

Authors

Contributions

XL and BW are contributed equally to this work. XL and BW prepared the main part of the manuscript, YG drew the pictures of Figures 1–4 and the supporting parts, and GL drew all the tables. X-L Wang revised the first draft of the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Guocheng Liu or Xiuli Wang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 847 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wang, B., Gao, Y. et al. Design and fabrication of novel coordination polymers containing Co(II), Ni(II), and Cu(II) for electrochemical detection of both ascorbic acid and Cr(VI). Transit Met Chem 48, 307–314 (2023). https://doi.org/10.1007/s11243-023-00544-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-023-00544-9

Navigation