Skip to main content
Log in

Preparation of a New Hard-Elastic Polymeric Material Based on Ultra-High-Molecular-Weight Polyethylene

  • PHYSICAL CHEMISTRY
  • Published:
Doklady Physical Chemistry Aims and scope Submit manuscript

Abstract

A novel approach to the preparation of a hard-elastic polymeric material based on ultra-high-molecular-weight polyethylene using the strategy of crazing of polymers was proposed. This approach comprises the process of deformation of the pristine films of ultra-high-molecular-weight polyethylene via the environmental intercrystallite crazing mechanism and the subsequent low-temperature spontaneous strain recovery upon stress relaxation. As a result, the material acquires new properties typical of hard-elastic materials: restoration of the porous structure with pore sizes in the nanometer range (less than 10 nm) after the secondary deformation in air up to ~20 vol %, high reversibility of deformation (50–85%), and the effect of opening and closing of pores under cyclic loading. The mechanism of this phenomenon was proposed, and the fields of practical applications of this kind of mechanosensitive material were indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Kurtz, S.M., The UHMWPE Handbook: Ultra-High Molecular Weight Polyethylene in Total Joint Replacement, 1st ed., San Diego, CA: Elsevier, 2004.

    Google Scholar 

  2. Hussain, M., Naqvi, R.A., Abbas, N.R., Khan, S.M., Nawaz, S., Hussain, A., Zahra, N., and Khalid, M.W., Polymers, 2020, vol. 12, no. 2, p. 323. https://doi.org/10.3390/polym12020323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ahmed, D.S., El-Hiti, G.A., Yousif, E., Ali, A.A., and Hameed, A.S., J. Polym. Res., 2018, vol. 25, p. 75. https://doi.org/10.1007/s10965-018-1474-x

    Article  CAS  Google Scholar 

  4. Samad, M.A. and Sinha, S.K., Tribol. Lett., 2010, vol. 38, p. 301. https://doi.org/10.1007/s11249-010-9610-8

    Article  CAS  Google Scholar 

  5. Salimon, A.I., Statnik, E.S., Zadorozhnyy, M.Yu., Senatov, F.S., Zherebtsov, D.D., Safonov, A.A., and Korsunsky, A.M., Materials, 2019, vol. 12, no. 13, p. 2195. https://doi.org/10.3390/ma12132195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Submicron Porous Materials, Bettotti, P., Ed., Springer, 2017.

    Google Scholar 

  7. Sprague, B.S., J. Macromol. Sci., 1973, vol. 8, pp. 157–187. https://doi.org/10.1080/00222347308245798

    Article  CAS  Google Scholar 

  8. Xie, J.Y., Xu, R.J., and Lei, C.H., Chinese J. Polym. Sci., 2020, vol. 38, no. 12, p. 1325. https://doi.org/10.1007/s10118-020-2432-8

    Article  CAS  Google Scholar 

  9. Lin, Y., Li, X., Meng, L., Chen, X., Lv, F., Zhang, Q., Zhang, R., and Li, L., Macromolecules, 2018, vol. 51, no. 7, p. 2690. https://doi.org/10.1021/acs.macromol.8b00255

    Article  CAS  Google Scholar 

  10. Lin, Y., Li, X., Chen, X., An, M., Zhang, Q., Wang, D., Chen, W., Sun, L., Yin, P., Meng, L., and Li, L., Polymer, 2019, vol. 184, p. 121930. https://doi.org/10.1016/j.polymer.2019.121930

    Article  CAS  Google Scholar 

  11. Okkelman, I.A., Dolgova, A.A., Banerjee, S., Kerry, J.P., Volynskii, A., Arzhakova, O.V., and Papkovsky, D.B., ACS Appl. Mater. Interfaces, 2017, vol. 9, no. 15, p. 13587. https://doi.org/10.1021/acsami.7b00405

    Article  CAS  PubMed  Google Scholar 

  12. Arora, P. and Zhang, Z., Chem. Rev., 2004, vol. 104, no. 10, pp. 4419−4462. https://doi.org/10.1021/cr020738u

    Article  CAS  PubMed  Google Scholar 

  13. Elyashevich, G., Karpov, E., and Kozlov, A., Macromol. Symp., 1999, vol. 147, no. 1, p. 91. https://doi.org/10.1002/masy.19991470110

    Article  CAS  Google Scholar 

  14. Xie, J., Xu, R., and Lei, C., Polymer, 2018, vol. 158, no. 5, p. 10. https://doi.org/10.1016/j.polymer.2018.10.047

    Article  CAS  Google Scholar 

  15. Stribeck, N., Zeinolebadi, A., Fakirov, S., Bhattacharyya, D., and Botta, S., Sci. Technol. Adv. Mater., 2013, vol. 14, no. 3, p. 035006. https://doi.org/10.1088/1468-6996/14/3/035006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Arzhakova, O.V., Nazarov, A.I., Solovei, A.R., Dolgova, A.A., Kopnov, A.Yu., Chaplygin, D.K., Tyubaeva, P.M., and Yarysheva, A.Yu., Membranes, 2021, vol. 11, p. 834. https://doi.org/10.3390/membranes11110834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Arzhakova, O.V., Kovalenko, S.M., Kopnov, A.Yu., Nazarov, A.I., Kopnova, T.Yu., Shpolvind, N.A., Tyubaeva, P.M., Cherdyntseva, T.A., Yarysheva, A.Yu., Dolgova, A.A., and Volynskii, A.L., Russ. J. Gen. Chem., 2021, vol. 91, no. 11, pp. 2249–2256. https://doi.org/10.1134/S1070363221110104

    Article  CAS  Google Scholar 

  18. Arzhakova, O.V., Kopnov, A.Yu., Nazarov, A.I., Dolgova, A.A., and Volynskii, A.L., Polymer, 2020, vol. 186, p. 122020. https://doi.org/10.1016/j.polymer.2019.122020

    Article  CAS  Google Scholar 

  19. Volynskii, A.L. and Bakeev, N.F., Surface Phenomena in the Structural and Mechanical Behaviour of Solid Polymers, London, New York: Taylor & Francis, 2016.

    Book  Google Scholar 

  20. Arzhakova, O.V., Dolgova, A.A., Yarysheva, A.Yu., Nikishin, I.I., and Volynskii, A.L., ACS Appl. Polym. Mater., 2020, vol. 2, no. 6, pp. 2338–2349. https://doi.org/10.1021/acsapm.0c00288

    Article  CAS  Google Scholar 

  21. Deblieck, R.A.S., van Beek, D.J.M., Remerie, K., and Ward, M.I., Polymer, 2011, vol. 52, no. 4, p. 2979. https://doi.org/10.1016/j.polymer.2011.03.055

    Article  CAS  Google Scholar 

  22. Yarysheva, A.Yu., Bagrov, D.V., Kechek’yan, P.A., Rukhlya, E.G., Bakirov, A.V., Yarysheva, L.M., Chvalun, S.N., and Volynskii, A.L., Polymer, 2019, vol. 169, p. 234. https://doi.org/10.1016/j.polymer.2019.02.066

    Article  CAS  Google Scholar 

  23. Roenko, A.O., Trofimchuk, E.S., Efimov, A.V., Armeev, G.A., Nikonorova, N.I., Nikolaev, A.Yu., and Volynskii, A.L., Polym. Sci., Ser. A, 2021, vol. 63, no. 5, pp. 471–484. https://doi.org/10.1134/S0965545X21050126

    Article  CAS  Google Scholar 

  24. Racherla, V., Lopez-Pamies, O., and Castaneda, P.P., Mech. Mater., 2010, vol. 42, no. 4, p. 451. https://doi.org/10.1016/j.mechmat.2009.11.005

    Article  Google Scholar 

  25. Arzhakova, O.V., Dolgova, A.A., Rukhlya, E.G., and Volynskii, A.L., Polymer, 2019, vol. 161, pp. 151–161. https://doi.org/10.1016/j.polymer.2018.12.018

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 20-03-00541_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Arzhakova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arzhakova, O.V., Yarysheva, A.Y., Nazarov, A.I. et al. Preparation of a New Hard-Elastic Polymeric Material Based on Ultra-High-Molecular-Weight Polyethylene. Dokl Phys Chem 510, 100–105 (2023). https://doi.org/10.1134/S0012501623600067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012501623600067

Keywords:

Navigation