Skip to main content
Log in

Peristalsis-Associated Mechanotransduction Drives Malignant Progression of Colorectal Cancer

  • SI: 2023 CMBE Young Innovators
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

In the colorectal cancer (CRC) tumor microenvironment, cancerous and precancerous cells continuously experience mechanical forces associated with peristalsis. Given that mechanical forces like shear stress and strain can positively impact cancer progression, we explored the hypothesis that peristalsis may also contribute to malignant progression in CRC. We defined malignant progression as enrichment of cancer stem cells and the acquisition of invasive behaviors, both vital to CRC progression.

Methods

We leveraged our peristalsis bioreactor to expose CRC cell lines (HCT116), patient-derived xenograft (PDX1,2) lines, or non-cancerous intestinal cells (HIEC-6) to forces associated with peristalsis in vitro. Cells were maintained in static control conditions or exposed to peristalsis for 24 h prior to assessment of cancer stem cell (CSC) emergence or the acquisition of invasive phenotypes.

Results

Exposure of HCT116 cells to peristalsis significantly increased the emergence of LGR5+ CSCs by 1.8-fold compared to static controls. Peristalsis enriched LGR5 positivity in several CRC cell lines, notably significant in KRAS mutant lines. In contrast, peristalsis failed to increase LGR5+ in non-cancerous intestinal cells, HIEC-6. LGR5+ emergence downstream of peristalsis was dependent on ROCK and Wnt activity, and not YAP1 activation. Additionally, HCT116 cells adopted invasive morphologies when exposed to peristalsis, with increased filopodia density and epithelial to mesenchymal gene expression, in a Wnt dependent manner.

Conclusions

Peristalsis associated forces drive malignant progression of CRC via ROCK, YAP1, and Wnt-related mechanotransduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Figure 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data Availability

Data supporting the findings of this study are deposited into a Texas Data Repository with the following https://doi.org/10.18738/T8/TJTOZN.

References

  1. Ahmed, D., P. W. Eide, I. A. Eilertsen, S. A. Danielsen, M. Eknæs, M. Hektoen, G. E. Lind, and R. A. Lothe. Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis.2:e71, 2013.

    Article  Google Scholar 

  2. Aiello, N. M., R. Maddipati, R. J. Norgard, D. Balli, J. Li, S. Yuan, T. Yamazoe, T. Black, A. Sahmoud, E. E. Furth, D. Bar-Sagi, and B. Z. Stanger. Emt subtype influences epithelial plasticity and mode of cell migration. Dev. Cell. 45:681-695.e684, 2018.

    Article  Google Scholar 

  3. Al Tanoury, Z., E. Schaffner-Reckinger, A. Halavatyi, C. Hoffmann, M. Moes, E. Hadzic, M. Catillon, M. Yatskou, and E. Friederich. Quantitative kinetic study of the actin-bundling protein l-plastin and of its impact on actin turn-over. PLoS ONE. 5:e9210, 2010.

    Article  Google Scholar 

  4. Arqués, O., I. Chicote, I. Puig, S. P. Tenbaum, G. Argilés, R. Dienstmann, N. Fernández, G. Caratù, J. Matito, D. Silberschmidt, J. Rodon, S. Landolfi, A. Prat, E. Espín, R. Charco, P. Nuciforo, A. Vivancos, W. Shao, J. Tabernero, and H. G. Palmer. Tankyrase inhibition blocks wnt/β-catenin pathway and reverts resistance to pi3k and akt inhibitors in the treatment of colorectal cancer. Clin. Cancer Res. 22:644–656, 2016.

    Article  Google Scholar 

  5. Avvisato, C. L., X. Yang, S. Shah, B. Hoxter, W. Li, R. Gaynor, R. Pestell, A. Tozeren, and S. W. Byers. Mechanical force modulates global gene expression and β-catenin signaling in colon cancer cells. J. Cell Sci. 120:2672–2682, 2007.

    Article  Google Scholar 

  6. Barault, L., N. Veyrie, V. Jooste, D. Lecorre, C. Chapusot, J. M. Ferraz, A. Lièvre, M. Cortet, A. M. Bouvier, P. Rat, P. Roignot, J. Faivre, P. Laurent-Puig, and F. Piard. Mutations in the RAS-MAPK, PI(3)K (phosphatidylinositol-3-oh kinase) signaling network correlate with poor survival in a population-based series of colon cancers. Int. J. Cancer. 122:2255–2259, 2008.

    Article  Google Scholar 

  7. Becker, L., Q. Huang, and H. Mashimo. Immunostaining of lgr5, an intestinal stem cell marker, in normal and premalignant human gastrointestinal tissue. Sci. World J. 8:1168–1176, 2008.

    Article  Google Scholar 

  8. Berg, K. C. G., P. W. Eide, I. A. Eilertsen, B. Johannessen, J. Bruun, S. A. Danielsen, M. Bjørnslett, L. A. Meza-Zepeda, M. Eknæs, G. E. Lind, O. Myklebost, R. I. Skotheim, A. Sveen, and R. A. Lothe. Multi-omics of 34 colorectal cancer cell lines—a resource for biomedical studies. Mol. Cancer. 16:116, 2017.

    Article  Google Scholar 

  9. Blaj, C., E. M. Schmidt, S. Lamprecht, H. Hermeking, A. Jung, T. Kirchner, and D. Horst. Oncogenic effects of high MAPK activity in colorectal cancer mark progenitor cells and persist irrespective of RAS mutations. Cancer Res. 77:1763–1774, 2017.

    Article  Google Scholar 

  10. Brabletz, T., A. Jung, S. Reu, M. Porzner, F. Hlubek, L. A. Kunz-Schughart, R. Knuechel, and T. Kirchner. Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc. Natl. Acad. Sci. USA. 98:10356–10361, 2001.

    Article  Google Scholar 

  11. Bregenzer, M. E., E. N. Horst, P. Mehta, C. M. Novak, S. Raghavan, C. S. Snyder, and G. Mehta. Integrated cancer tissue engineering models for precision medicine. PLoS ONE.14:e0216564, 2019.

    Article  Google Scholar 

  12. Cai, H., and Y. Xu. The role of LPA and YAP signaling in long-term migration of human ovarian cancer cells. Cell Commun. Signal. 11:31, 2013.

    Article  Google Scholar 

  13. Carmon, K. S., X. Gong, Q. Lin, A. Thomas, and Q. Liu. R-spondins function as ligands of the orphan receptors lgr4 and lgr5 to regulate wnt/β-catenin signaling. Proc. Natl. Acad. Sci. 108:11452–11457, 2011.

    Article  Google Scholar 

  14. Catterson, J. H., M. Khericha, M. C. Dyson, A. J. Vincent, R. Callard, S. M. Haveron, A. Rajasingam, M. Ahmad, and L. Partridge. Short-term, intermittent fasting induces long-lasting gut health and tor-independent lifespan extension. Curr. Biol. 28:1714-1724.e1714, 2018.

    Article  Google Scholar 

  15. Cha, B., X. Geng, M. R. Mahamud, J. Fu, A. Mukherjee, Y. Kim, E. H. Jho, T. H. Kim, M. L. Kahn, L. Xia, J. B. Dixon, H. Chen, and R. S. Srinivasan. Mechanotransduction activates canonical wnt/β-catenin signaling to promote lymphatic vascular patterning and the development of lymphatic and lymphovenous valves. Genes Dev. 30:1454–1469, 2016.

    Article  Google Scholar 

  16. Chen, X., X. Zhang, Y. Jiang, X. Zhang, M. Liu, S. Wang, S. Liu, H. Liang, and C. Liu. Yap1 activation promotes epithelial–mesenchymal transition and cell survival of renal cell carcinoma cells under shear stress. Carcinogenesis. 43:301–310, 2022.

    Article  Google Scholar 

  17. Chung, P.-C., P.-C. Hsieh, C.-C. Lan, P.-C. Hsu, M.-Y. Sung, Y.-H. Lin, I. S. Tzeng, V. Chiu, C.-F. Cheng, and C.-Y. Kuo. Role of chrysophanol in epithelial-mesenchymal transition in oral cancer cell lines via a wnt-3-dependent pathway. Evid.-Based Complement. Altern. Med. 2020:8373715, 2020.

    Article  Google Scholar 

  18. Clevenger, A. J., L. Z. Crawford, D. Noltensmeyer, H. Babaei, S. B. Mabbott, R. Avazmohammadi, and S. Raghavan. Rapid prototypable biomimetic peristalsis bioreactor capable of concurrent shear and multi-axial strain. Cells Tissues Organs. 212:96–110, 2022.

    Article  Google Scholar 

  19. Clifton, K. K., C. X. Ma, L. Fontana, and L. L. Peterson. Intermittent fasting in the prevention and treatment of cancer. CA. 71:527–546, 2021.

    Google Scholar 

  20. Cooke, M., M. J. Baker, M. G. Kazanietz, and V. Casado-Medrano. Pkcε regulates rho GTPases and actin cytoskeleton reorganization in non-small cell lung cancer cells. Small GTPases. 12:202–208, 2021.

    Article  Google Scholar 

  21. Dinning, P. G., L. Wiklendt, L. Maslen, I. Gibbins, V. Patton, J. W. Arkwright, D. Z. Lubowski, G. O’Grady, P. A. Bampton, S. J. Brookes, and M. Costa. Quantification of in vivo colonic motor patterns in healthy humans before and after a meal revealed by high-resolution fiber-optic manometry. Neurogastroenterol. Motil. 26:1443–1457, 2014.

    Article  Google Scholar 

  22. Dow, L. E., K. P. O’Rourke, J. Simon, D. F. Tschaharganeh, J. H. van Es, H. Clevers, and S. W. Lowe. APC restoration promotes cellular differentiation and reestablishes crypt homeostasis in colorectal cancer. Cell. 161:1539–1552, 2015.

    Article  Google Scholar 

  23. Du, J., Y. Zu, J. Li, S. Du, Y. Xu, L. Zhang, L. Jiang, Z. Wang, S. Chien, and C. Yang. Extracellular matrix stiffness dictates Wnt expression through integrin pathway. Sci. Rep. 6:20395, 2016.

    Article  Google Scholar 

  24. Esposito, D., I. Pant, Y. Shen, R. F. Qiao, X. Yang, Y. Bai, J. Jin, P. I. Poulikakos, and S. A. Aaronson. Rock1 mechano-signaling dependency of human malignancies driven by tead/yap activation. Nat. Commun. 13:703, 2022.

    Article  Google Scholar 

  25. Fallah, S., and J. F. Beaulieu. The hippo pathway effector yap1 regulates intestinal epithelial cell differentiation. Cells. 9:1895, 2020.

    Article  Google Scholar 

  26. Fan, R., T. Emery, Y. Zhang, Y. Xia, J. Sun, and J. Wan. Circulatory shear flow alters the viability and proliferation of circulating colon cancer cells. Sci. Rep. 6:27073, 2016.

    Article  Google Scholar 

  27. Fang, G., H. Lu, R. Al-Nakashli, R. Chapman, Y. Zhang, L. A. Ju, G. Lin, M. H. Stenzel, and D. Jin. Enabling peristalsis of human colon tumor organoids on microfluidic chips. Biofabrication.14:015006, 2022.

    Article  Google Scholar 

  28. Fearon, E. R., and B. Vogelstein. A genetic model for colorectal tumorigenesis. Cell. 61:759–767, 1990.

    Article  Google Scholar 

  29. Feng, J., J. Gou, J. Jia, T. Yi, T. Cui, and Z. Li. Verteporfin, a suppressor of yap–tead complex, presents promising antitumor properties on ovarian cancer. OncoTargets Therapy. 9:5371–5381, 2016.

    Article  Google Scholar 

  30. Fernández-Sánchez, M. E., S. Barbier, J. Whitehead, G. Béalle, A. Michel, H. Latorre-Ossa, C. Rey, L. Fouassier, A. Claperon, L. Brullé, E. Girard, N. Servant, T. Rio-Frio, H. Marie, S. Lesieur, C. Housset, J.-L. Gennisson, M. Tanter, C. Ménager, S. Fre, S. Robine, and E. Farge. Mechanical induction of the tumorigenic β-catenin pathway by tumour growth pressure. Nature. 523:92–95, 2015.

    Article  Google Scholar 

  31. Flores-Hernández, E., D. M. Velázquez, M. C. Castañeda-Patlán, G. Fuentes-García, G. Fonseca-Camarillo, J. K. Yamamoto-Furusho, M. T. Romero-Avila, J. A. García-Sáinz, and M. Robles-Flores. Canonical and non-canonical wnt signaling are simultaneously activated by wnts in colon cancer cells. Cell. Signal.72:109636, 2020.

    Article  Google Scholar 

  32. Gayer, C. P., and M. D. Basson. The effects of mechanical forces on intestinal physiology and pathology. Cell. Signal. 21:1237–1244, 2009.

    Article  Google Scholar 

  33. Gonsalves, W. I., M. R. Mahoney, D. J. Sargent, G. D. Nelson, S. R. Alberts, F. A. Sinicrope, R. M. Goldberg, P. J. Limburg, S. N. Thibodeau, A. Grothey, J. M. Hubbard, E. Chan, S. Nair, J. L. Berenberg, and R. R. McWilliams. Patient and tumor characteristics and BRAF and KRAS mutations in colon cancer, NCCTG/alliance n0147. JNCI. 7:106, 2014.

    Google Scholar 

  34. Gregorieff, A., Y. Liu, M. R. Inanlou, Y. Khomchuk, and J. L. Wrana. Yap-dependent reprogramming of lgr5(+) stem cells drives intestinal regeneration and cancer. Nature. 526:715–718, 2015.

    Article  Google Scholar 

  35. Hagihara, T., J. Kondo, H. Endo, M. Ohue, Y. Sakai, and M. Inoue. Hydrodynamic stress stimulates growth of cell clusters via the anxa1/pi3k/akt axis in colorectal cancer. Sci. Rep. 9:20027, 2019.

    Article  Google Scholar 

  36. Hervieu, C., N. Christou, S. Battu, and M. Mathonnet. The role of cancer stem cells in colorectal cancer: from the basics to novel clinical trials. Cancers. 13:1092, 2021.

    Article  Google Scholar 

  37. Hsu, H. C., Y. S. Liu, K. C. Tseng, C. L. Hsu, Y. Liang, T. S. Yang, J. S. Chen, R. P. Tang, S. J. Chen, and H. C. Chen. Overexpression of lgr5 correlates with resistance to 5-fu-based chemotherapy in colorectal cancer. Int. J. Colorectal Dis. 28:1535–1546, 2013.

    Article  Google Scholar 

  38. Hu, Y., C. Yan, L. Mu, K. Huang, X. Li, D. Tao, Y. Wu, and J. Qin. Fibroblast-derived exosomes contribute to chemoresistance through priming cancer stem cells in colorectal cancer. PLoS ONE.10:e0125625, 2015.

    Article  Google Scholar 

  39. Huang, D., W. Sun, Y. Zhou, P. Li, F. Chen, H. Chen, D. Xia, E. Xu, M. Lai, Y. Wu, and H. Zhang. Mutations of key driver genes in colorectal cancer progression and metastasis. Cancer Metast. Rev. 37:173–187, 2018.

    Article  Google Scholar 

  40. Huang, W., H. Hu, Q. Zhang, X. Wu, F. Wei, F. Yang, L. Gan, N. Wang, X. Yang, and A.-Y. Guo. Regulatory networks in mechanotransduction reveal key genes in promoting cancer cell stemness and proliferation. Oncogene. 38:6818–6834, 2019.

    Article  Google Scholar 

  41. Jacquemet, G., D. M. Green, R. E. Bridgewater, A. von Kriegsheim, M. J. Humphries, J. C. Norman, and P. T. Caswell. Rcp-driven α5β1 recycling suppresses rac and promotes rhoa activity via the racgap1–iqgap1 complex. J. Cell Biol. 202:917–935, 2013.

    Article  Google Scholar 

  42. Jacquemet, G., H. Hamidi, and J. Ivaska. Filopodia in cell adhesion, 3d migration and cancer cell invasion. Curr. Opin. Cell Biol. 36:23–31, 2015.

    Article  Google Scholar 

  43. Jacquemet, G., I. Paatero, A. F. Carisey, A. Padzik, J. S. Orange, H. Hamidi, and J. Ivaska. Filoquant reveals increased filopodia density during breast cancer progression. J. Cell Biol. 216:3387–3403, 2017.

    Article  Google Scholar 

  44. Jiang, Y., W. Li, X. He, H. Zhang, F. Jiang, and Z. Chen. Lgr5 expression is a valuable prognostic factor for colorectal cancer: Evidence from a meta-analysis. BMC Cancer. 16:12, 2016.

    Article  Google Scholar 

  45. Jie, D., Z. Zhongmin, L. Guoqing, L. Sheng, Z. Yi, W. Jing, and Z. Liang. Positive expression of lsd1 and negative expression of e-cadherin correlate with metastasis and poor prognosis of colon cancer. Dig. Dis. Sci. 58:1581–1589, 2013.

    Article  Google Scholar 

  46. Jin, T., M. Li, T. Li, S. Yan, Q. Ran, and W. Chen. The inactivation of hippo signaling pathway promotes the development of adenomyosis by regulating EMT, proliferation, and apoptosis of cells. Reprod. Sci. 2023. https://doi.org/10.1007/s43032-023-01189-w.

    Article  Google Scholar 

  47. Jufri, N. F., A. Mohamedali, A. Avolio, and M. S. Baker. Mechanical stretch: Physiological and pathological implications for human vascular endothelial cells. Vasc. Cell. 7:8, 2015.

    Article  Google Scholar 

  48. Kang, K. S., and A. G. Robling. New insights into wnt–lrp5/6–β-catenin signaling in mechanotransduction. Front. Endocrinol. 2015. https://doi.org/10.3389/fendo.2014.00246.

    Article  Google Scholar 

  49. Karaosmanoğlu, O., S. Banerjee, and H. Sivas. Identification of biomarkers associated with partial epithelial to mesenchymal transition in the secretome of slug over-expressing hepatocellular carcinoma cells. Cell. Oncol. 41:439–453, 2018.

    Article  Google Scholar 

  50. Kemper, K., P. R. Prasetyanti, W. De Lau, H. Rodermond, H. Clevers, and J. P. Medema. Monoclonal antibodies against lgr5 identify human colorectal cancer stem cells. Stem Cells. 30:2378–2386, 2012.

    Article  Google Scholar 

  51. Kim, H. J., D. Huh, G. Hamilton, and D. E. Ingber. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip. 12:2165–2174, 2012.

    Article  Google Scholar 

  52. Knickelbein, K., and L. Zhang. Mutant KRAS as a critical determinant of the therapeutic response of colorectal cancer. Genes Dis. 2:4–12, 2015.

    Article  Google Scholar 

  53. KrishnaPriya, S., S. Omer, S. Banerjee, D. Karunagaran, and G. K. Suraishkumar. An integrated approach to understand fluid shear stress-driven and reactive oxygen species-mediated metastasis of colon adenocarcinoma through mrna-mirna-lncrna-circrna networks. Mol. Genet. Genomics. 297:1353–1370, 2022.

    Article  Google Scholar 

  54. Lee, H. J., M. F. Diaz, K. M. Price, J. A. Ozuna, S. Zhang, E. M. Sevick-Muraca, J. P. Hagan, and P. L. Wenzel. Fluid shear stress activates yap1 to promote cancer cell motility. Nat. Commun. 8:14122, 2017.

    Article  Google Scholar 

  55. Lee, K. K., H. A. McCauley, T. R. Broda, M. J. Kofron, J. M. Wells, and C. I. Hong. Human stomach-on-a-chip with luminal flow and peristaltic-like motility. Lab Chip. 18:3079–3085, 2018.

    Article  Google Scholar 

  56. Li, C., Z. Wang, Y. Chen, M. Zhou, H. Zhang, R. Chen, F. Shi, C. Wang, and Z. Rui. Transcriptional silencing of ets-1 abrogates epithelial-mesenchymal transition resulting in reduced motility of pancreatic cancer cells. Oncol. Rep. 33:559–565, 2015.

    Article  Google Scholar 

  57. Li, Q., Q. Lai, C. He, Y. Fang, Q. Yan, Y. Zhang, X. Wang, C. Gu, Y. Wang, L. Ye, L. Han, X. Lin, J. Chen, J. Cai, A. Li, and S. Liu. Runx1 promotes tumour metastasis by activating the wnt/β-catenin signalling pathway and EMT in colorectal cancer. J. Exp. Clin. Cancer Res. 38:334, 2019.

    Article  Google Scholar 

  58. Li, X., L. Nadauld, A. Ootani, D. C. Corney, R. K. Pai, O. Gevaert, M. A. Cantrell, P. G. Rack, J. T. Neal, C. W. Chan, T. Yeung, X. Gong, J. Yuan, J. Wilhelmy, S. Robine, L. D. Attardi, S. K. Plevritis, K. E. Hung, C. Z. Chen, H. P. Ji, and C. J. Kuo. Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture. Nat. Med. 20:769–777, 2014.

    Article  Google Scholar 

  59. Lin, Y. U., T. Wu, Q. Yao, S. Zi, L. Cui, M. Yang, and J. Li. Lgr5 promotes the proliferation of colorectal cancer cells via the wnt/β-catenin signaling pathway. Oncol. Lett. 9:2859–2863, 2015.

    Article  Google Scholar 

  60. Lipsyc, M., and R. Yaeger. Impact of somatic mutations on patterns of metastasis in colorectal cancer. J. Gastrointest. Oncol. 6:645–649, 2015.

    Google Scholar 

  61. Liu, M., X. Zhang, J. Cai, Y. Li, Q. Luo, H. Wu, Z. Yang, L. Wang, and D. Chen. Downregulation of trim58 expression is associated with a poor patient outcome and enhances colorectal cancer cell invasion. Oncol. Rep. 40:1251–1260, 2018.

    Google Scholar 

  62. Livak, K. J., and T. D. Schmittgen. Analysis of relative gene expression data using real-time quantitative PCR and the 2−δδct method. Methods. 25:402–408, 2001.

    Article  Google Scholar 

  63. Manne, U., C. Shanmugam, V. R. Katkoori, H. L. Bumpers, and W. E. Grizzle. Development and progression of colorectal neoplasia. Cancer Biomark. 9:235–265, 2010.

    Article  Google Scholar 

  64. Mason, D. E., M. Goeckel, S. L. Vega, P.-H. Wu, D. Johnson, S.-J. Heo, D. Wirtz, J. A. Burdick, L. Wood, B. Chow, A. N. Stratman, and J. D. Boerckel. Mechanotransductive Feedback Control of Endothelial Cell Motility and Vascular Morphogenesis. Cambridge: Elife Sciences Publications, Ltd, 2023.

    Google Scholar 

  65. Mazzei, A., P. Pagliara, G. Del Vecchio, L. Giampetruzzi, F. Croce, R. Schiavone, T. Verri, and A. Barca. Cytoskeletal responses and aif-1 expression in caco-2 monolayers exposed to phorbol-12-myristate-13-acetate and carnosine. Biology. 12:36, 2023.

    Article  Google Scholar 

  66. Meng, F., C. Shen, L. Yang, C. Ni, J. Huang, K. Lin, Z. Cao, S. Xu, W. Cui, X. Wang, B. Zhou, C. Xiong, J. Wang, and B. Zhao. Mechanical stretching boosts expansion and regeneration of intestinal organoids through fueling stem cell self-renewal. Cell Regen. 11:39, 2022.

    Article  Google Scholar 

  67. Meza, D., B. Musmacker, E. Steadman, T. Stransky, D. A. Rubenstein, and W. Yin. Endothelial cell biomechanical responses are dependent on both fluid shear stress and tensile strain. Cell. Mol. Bioeng. 12:311–325, 2019.

    Article  Google Scholar 

  68. Mezzacappa, C., Y. Komiya, and R. Habas. Activation and function of small GTPases rho, RAC, and CDC42 during gastrulation. Methods Mol. Biol. 839:119–131, 2012.

    Article  Google Scholar 

  69. Mindikoglu, A. L., M. M. Abdulsada, A. Jain, P. K. Jalal, S. Devaraj, Z. R. Wilhelm, A. R. Opekun, and S. Y. Jung. Intermittent fasting from dawn to sunset for four consecutive weeks induces anticancer serum proteome response and improves metabolic syndrome. Sci. Rep. 10:18341, 2020.

    Article  Google Scholar 

  70. Mladinich, M., D. Ruan, and C.-H. Chan. Tackling cancer stem cells via inhibition of EMT transcription factors. Stem Cells Int. 2016:5285892, 2016.

    Article  Google Scholar 

  71. Moon, B.-S., W.-J. Jeong, J. Park, T. I. Kim, D. S. Min, and K.-Y. Choi. Role of oncogenic k-ras in cancer stem cell activation by aberrant wnt/β-catenin signaling. JNCI. 106:djt373, 2014.

    Article  Google Scholar 

  72. Nam, S. H., M. Kang, J. Ryu, H.-J. Kim, D. Kim, D. G. Kim, N. H. Kwon, S. Kim, and J. W. Lee. Suppression of lysyl-trna synthetase, KRS, causes incomplete epithelial-mesenchymal transition and ineffective cell-extracellular matrix adhesion for migration. Int. J. Oncol. 48:1553–1560, 2016.

    Article  Google Scholar 

  73. Network, C. G. A. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 487:330–337, 2012.

    Article  Google Scholar 

  74. Ostrowski, M. A., E. Y. Huang, V. N. Surya, C. Poplawski, J. M. Barakat, G. L. Lin, G. G. Fuller, and A. R. Dunn. Multiplexed fluid flow device to study cellular response to tunable shear stress gradients. Ann. Biomed. Eng. 44:2261–2272, 2016.

    Article  Google Scholar 

  75. Parri, M., and P. Chiarugi. RAC and rho GTPases in cancer cell motility control. Cell Commun. Signal. 8:23, 2010.

    Article  Google Scholar 

  76. Pereira, A. A. L., J. F. M. Rego, V. Morris, M. J. Overman, C. Eng, C. R. Garrett, A. T. Boutin, R. Ferrarotto, M. Lee, Z. Q. Jiang, P. M. Hoff, J. N. Vauthey, E. Vilar, D. Maru, and S. Kopetz. Association between KRAS mutation and lung metastasis in advanced colorectal cancer. Br. J. Cancer. 112:424–428, 2015.

    Article  Google Scholar 

  77. Phipps, A. I., D. D. Buchanan, K. W. Makar, A. K. Win, J. A. Baron, N. M. Lindor, J. D. Potter, and P. A. Newcomb. KRAS-mutation status in relation to colorectal cancer survival: The joint impact of correlated tumour markers. Br. J. Cancer. 108:1757–1764, 2013.

    Article  Google Scholar 

  78. Polyak, K., and R. A. Weinberg. Transitions between epithelial and mesenchymal states: Acquisition of malignant and stem cell traits. Nat. Rev. Cancer. 9:265–273, 2009.

    Article  Google Scholar 

  79. Qin, L., Y.-T. Yin, F.-J. Zheng, L.-X. Peng, C.-F. Yang, Y.-N. Bao, Y.-Y. Liang, X.-J. Li, Y.-Q. Xiang, R. Sun, A.-H. Li, R.-H. Zou, X.-Q. Pei, B.-J. Huang, T.-B. Kang, D.-F. Liao, Y.-X. Zeng, B. O. Williams, and C.-N. Qian. Wnt5a promotes stemness characteristics in nasopharyngeal carcinoma cells leading to metastasis and tumorigenesis. Oncotarget. 6:10239–10252, 2015.

    Article  Google Scholar 

  80. Radisky, E. S., and D. C. Radisky. Matrix metalloproteinase-induced epithelial-mesenchymal transition in breast cancer. J. Mammary Gland Biol. Neoplasia. 15:201–212, 2010.

    Article  Google Scholar 

  81. Raghavan, S., P. Mehta, M. R. Ward, M. E. Bregenzer, E. M. A. Fleck, L. Tan, K. McLean, R. J. Buckanovich, and G. Mehta. Personalized medicine-based approach to model patterns of chemoresistance and tumor recurrence using ovarian cancer stem cell spheroids. Clin. Cancer Res. 23:6934–6945, 2017.

    Article  Google Scholar 

  82. Raghavan, S., P. Mehta, Y. Xie, Y. L. Lei, and G. Mehta. Ovarian cancer stem cells and macrophages reciprocally interact through the wnt pathway to promote pro-tumoral and malignant phenotypes in 3d engineered microenvironments. J. Immunother. Cancer. 7:190, 2019.

    Article  Google Scholar 

  83. Rawla, P., T. Sunkara, and A. Barsouk. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. PRZ Gastroenterol. 14:89–103, 2019.

    Google Scholar 

  84. Rosselot, A. E., M. Park, M. Kim, T. Matsu-Ura, G. Wu, D. E. Flores, K. R. Subramanian, S. Lee, N. Sundaram, T. R. Broda, H. A. McCauley, J. A. Hawkins, K. Chetal, N. Salomonis, N. F. Shroyer, M. A. Helmrath, J. M. Wells, J. B. Hogenesch, S. R. Moore, and C. I. Hong. Ontogeny and function of the circadian clock in intestinal organoids. EMBO J.41:e106973, 2022.

    Article  Google Scholar 

  85. Sahai, E., and C. J. Marshall. Differing modes of tumour cell invasion have distinct requirements for rho/rock signalling and extracellular proteolysis. Nat. Cell Biol. 5:711–719, 2003.

    Article  Google Scholar 

  86. Sakai, E., M. Nakayama, H. Oshima, Y. Kouyama, A. Niida, S. Fujii, A. Ochiai, K. I. Nakayama, K. Mimori, Y. Suzuki, C. P. Hong, C.-Y. Ock, S.-J. Kim, and M. Oshima. Combined mutation of apc, kras, and tgfbr2 effectively drives metastasis of intestinal cancer. Cancer Res. 78:1334–1346, 2018.

    Article  Google Scholar 

  87. Sanz-Moreno, V., G. Gadea, J. Ahn, H. Paterson, P. Marra, S. Pinner, E. Sahai, and C. J. Marshall. Rac activation and inactivation control plasticity of tumor cell movement. Cell. 135:510–523, 2008.

    Article  Google Scholar 

  88. Sarvestani, S. K., R. K. DeHaan, P. G. Miller, S. Bose, X. Shen, M. L. Shuler, and E. H. Huang. A tissue engineering approach to metastatic colon cancer. iScience. 23:101719, 2020.

    Article  Google Scholar 

  89. Sharili, A.-S., S. Allen, K. Smith, J. Price, and I. M. McGonnell. Snail2 promotes osteosarcoma cell motility through remodelling of the actin cytoskeleton and regulates tumor development. Cancer Lett. 333:170–179, 2013.

    Article  Google Scholar 

  90. Shibue, T., M. W. Brooks, and R. A. Weinberg. An integrin-linked machinery of cytoskeletal regulation that enables experimental tumor initiation and metastatic colonization. Cancer Cell. 24:481–498, 2013.

    Article  Google Scholar 

  91. Shibue, T., and R. A. Weinberg. EMT, CSCS, and drug resistance: The mechanistic link and clinical implications. Nat. Rev. 14:611–629, 2017.

    Google Scholar 

  92. Shmelkov, S. V., J. M. Butler, A. T. Hooper, A. Hormigo, J. Kushner, T. Milde, R. StClair, M. Baljevic, I. White, D. K. Jin, A. Chadburn, A. J. Murphy, D. M. Valenzuela, N. W. Gale, G. Thurston, G. D. Yancopoulos, M. D’Angelica, N. Kemeny, D. Lyden, and S. Rafii. Cd133 expression is not restricted to stem cells, and both cd133+ and cd133- metastatic colon cancer cells initiate tumors. J. Clin. Invest. 118:2111–2120, 2008.

    Google Scholar 

  93. Siegel, R. L., K. D. Miller, H. E. Fuchs, and A. Jemal. Cancer statistics, 2022. CA Cancer J Clin. 72:7–33, 2022.

    Article  Google Scholar 

  94. Siegel, R. L., K. D. Miller, A. Goding Sauer, S. A. Fedewa, L. F. Butterly, J. C. Anderson, A. Cercek, R. A. Smith, and A. Jemal. Colorectal cancer statistics, 2020. CA. 70:145–164, 2020.

    Google Scholar 

  95. Siegel, R. L., K. D. Miller, N. S. Wagle, and A. Jemal. Cancer statistics, 2023. CA. 73:17–48, 2023.

    Google Scholar 

  96. Song, I. H., K.-R. Kim, S. Lim, S.-H. Kim, and C. O. Sung. Expression and prognostic significance of epithelial–mesenchymal transition-related markers and phenotype in serous ovarian cancer. Pathol. Res. Pract. 214:1564–1571, 2018.

    Article  Google Scholar 

  97. Spencer, N. J., P. G. Dinning, S. J. Brookes, and M. Costa. Insights into the mechanisms underlying colonic motor patterns. J. Physiol. 594:4099–4116, 2016.

    Article  Google Scholar 

  98. Sprenkeler, E. G. G., A. T. J. Tool, S. S. V. Henriet, R. van Bruggen, and T. W. Kuijpers. Formation of neutrophil extracellular traps requires actin cytoskeleton rearrangements. Blood. 139:3166–3180, 2022.

    Article  Google Scholar 

  99. Srinivasan, S., V. Ashok, S. Mohanty, A. Das, S. Das, S. Kumar, S. Sen, and R. Purwar. Blockade of rho-associated protein kinase (rock) inhibits the contractility and invasion potential of cancer stem like cells. Oncotarget. 8:21418–21428, 2017.

    Article  Google Scholar 

  100. Strelez, C., S. Chilakala, K. Ghaffarian, R. Lau, E. Spiller, N. Ung, D. Hixon, A. Y. Yoon, R. X. Sun, H.-J. Lenz, J. E. Katz, and S. M. Mumenthaler. Human colorectal cancer-on-chip model to study the microenvironmental influence on early metastatic spread. iScience. 24:102509, 2021.

    Article  Google Scholar 

  101. Sui, X., J. Zhu, H. Tang, C. Wang, J. Zhou, W. Han, X. Wang, Y. Fang, Y. Xu, D. Li, R. Chen, J. Ma, Z. Jing, X. Gu, H. Pan, and C. He. P53 controls colorectal cancer cell invasion by inhibiting the NF-ΚB-mediated activation of fascin. Oncotarget. 6:22869–22879, 2015.

    Article  Google Scholar 

  102. Takahashi, H., H. Ishii, N. Nishida, I. Takemasa, T. Mizushima, M. Ikeda, T. Yokobori, K. Mimori, H. Yamamoto, M. Sekimoto, Y. Doki, and M. Mori. Significance of lgr5(+ve) cancer stem cells in the colon and rectum. Ann. Surg. Oncol. 18:1166–1174, 2011.

    Article  Google Scholar 

  103. Takeda, H., M. Okada, S. Suzuki, K. Kuramoto, H. Sakaki, H. Watarai, T. Sanomachi, S. Seino, T. Yoshioka, and C. Kitanaka. Rho-associated protein kinase (rock) inhibitors inhibit survivin expression and sensitize pancreatic cancer stem cells to gemcitabine. Anticancer Res. 36:6311–6318, 2016.

    Article  Google Scholar 

  104. Tang, Q., J. Chen, Z. Di, W. Yuan, Z. Zhou, Z. Liu, S. Han, Y. Liu, G. Ying, X. Shu, and M. Di. Tm4sf1 promotes EMT and cancer stemness via the wnt/β-catenin/sox2 pathway in colorectal cancer. J. Exp. Clin. Cancer Res. 39:232, 2020.

    Article  Google Scholar 

  105. Thamilselvan, V., A. Patel, J. van der Voortvan Zyp, and M. D. Basson. Colon cancer cell adhesion in response to src kinase activation and actin-cytoskeleton by non-laminar shear stress. J. Cell Biochem. 92:361–371, 2004.

    Article  Google Scholar 

  106. Till, J. E., C. Yoon, B. J. Kim, K. Roby, P. Addai, E. Jonokuchi, L. H. Tang, S. S. Yoon, and S. Ryeom. Oncogenic kras and p53 loss drive gastric tumorigenesis in mice that can be attenuated by e-cadherin expression. Cancer Res. 77:5349–5359, 2017.

    Article  Google Scholar 

  107. Tran, K. C., and J. Zhao. Lysophosphatidic acid regulates rho family of gtpases in lungs. Cell Biochem. Biophys. 79:493–496, 2021.

    Article  Google Scholar 

  108. Uchida, H., K. Yamazaki, M. Fukuma, T. Yamada, T. Hayashida, H. Hasegawa, M. Kitajima, Y. Kitagawa, and M. Sakamoto. Overexpression of leucine-rich repeat-containing g protein-coupled receptor 5 in colorectal cancer. Cancer Sci. 101:1731–1737, 2010.

    Article  Google Scholar 

  109. Vu, T., and P. K. Datta. Regulation of emt in colorectal cancer: A culprit in metastasis. Cancers (Basel). 9:171, 2017.

    Article  Google Scholar 

  110. Wang, L., L. Xue, H. Yan, J. Li, and Y. Lu. Effects of rock inhibitor, y-27632, on adhesion and mobility in esophageal squamous cell cancer cells. Mol. Biol. Rep. 37:1971–1977, 2010.

    Article  Google Scholar 

  111. Wang, Q., X. Yang, Y. Xu, Z. Shen, H. Cheng, F. Cheng, X. Liu, and R. Wang. Rhoa/rho-kinase triggers epithelial-mesenchymal transition in mesothelial cells and contributes to the pathogenesis of dialysis-related peritoneal fibrosis. Oncotarget. 9:14397–14412, 2018.

    Article  Google Scholar 

  112. Weeraratna, A. T., Y. Jiang, G. Hostetter, K. Rosenblatt, P. Duray, M. Bittner, and J. M. Trent. Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell. 1:279–288, 2002.

    Article  Google Scholar 

  113. Wolf, K., I. Mazo, H. Leung, K. Engelke, U. H. Vonandrian, E. I. Deryugina, A. Y. Strongin, E.-B. Bröcker, and P. Friedl. Compensation mechanism in tumor cell migration: Mesenchymal–amoeboid transition after blocking of pericellular proteolysis. J. Cell Biol. 160:267–277, 2003.

    Article  Google Scholar 

  114. Wong, W. Y., K. Gilman, and K. H. Limesand. Yap activation in irradiated parotid salivary glands is regulated by rock activity. PLoS ONE.15:e0232921, 2020.

    Article  Google Scholar 

  115. Wu, W., J. Cao, Z. Ji, J. Wang, T. Jiang, and H. Ding. Co-expression of lgr5 and cxcr4 characterizes cancer stem-like cells of colorectal cancer. Oncotarget. 7:81144–81155, 2016.

    Article  Google Scholar 

  116. Yang, L., F. Dai, L. Tang, Y. Le, and W. Yao. Macrophage differentiation induced by PMA is mediated by activation of RHOA/ROCK signaling. J. Toxicol. Sci. 42:763–771, 2017.

    Article  Google Scholar 

  117. Ye, Q., S. Zhao, Y. Zhang, Y.-M. Su, M. Chen, J. Zhao, G.-Z. Jia, B.-M. Han, and J.-T. Jiang. Activation of the RHOA/ROCK pathway contributes to renal fibrosis in offspring rats induced by maternal exposure to di-n-butyl phthalate. Toxicology.443:152573, 2020.

    Article  Google Scholar 

  118. Yokoyama, S., and T. Ozaki. Contractions of the longitudinal and circular muscle of the small intestine. Prog. Clin. Biol. Res. 327:483–492, 1990.

    Google Scholar 

  119. Yoo, P. S., A. L. Mulkeen, A. Dardik, and C. H. Cha. A novel in vitro model of lymphatic metastasis from colorectal cancer. J. Surg. Res. 143:94–98, 2007.

    Article  Google Scholar 

  120. Yoon, C., J. Till, S. J. Cho, K. K. Chang, J. X. Lin, C. M. Huang, S. Ryeom, and S. S. Yoon. Kras activation in gastric adenocarcinoma stimulates epithelial-to-mesenchymal transition to cancer stem-like cells and promotes metastasis. Mol. Cancer Res. 17:1945–1957, 2019.

    Article  Google Scholar 

  121. Yoshihara, M., Y. Yamakita, H. Kajiyama, T. Senga, Y. Koya, M. Yamashita, A. Nawa, and F. Kikkawa. Filopodia play an important role in the trans-mesothelial migration of ovarian cancer cells. Exp. Cell Res.392:112011, 2020.

    Article  Google Scholar 

  122. Yu, M., Y. Chen, X. Li, R. Yang, L. Zhang, L. Huangfu, N. Zheng, X. Zhao, L. Lv, Y. Hong, H. Liang, and H. Shan. YAP1 contributes to NSCLC invasion and migration by promoting slug transcription via the transcription co-factor TEAD. Cell Death Dis. 9:464, 2018.

    Article  Google Scholar 

  123. Zhang, X., L. Zhang, Y. Du, H. Zheng, P. Zhang, Y. Sun, Y. Wang, J. Chen, P. Ding, N. Wang, C. Yang, T. Huang, X. Yao, Q. Qiao, H. Gu, G. Cai, S. Cai, X. Zhou, and W. Hu. A novel foxm1 isoform, FOXM1D, promotes epithelial–mesenchymal transition and metastasis through rocks activation in colorectal cancer. Oncogene. 36:807–819, 2017.

    Article  Google Scholar 

  124. Zheng, J., L. Xu, Y. Pan, S. Yu, H. Wang, D. Kennedy, and Y. Zhang. SOX2 modulates motility and enhances progression of colorectal cancer via the rho-ROCK signaling pathway. Oncotarget. 8:98635–98645, 2017.

    Article  Google Scholar 

  125. Zheng, L., C. Xiang, X. Li, Q. Guo, L. Gao, H. Ni, Y. Xia, and T. Xi. STARD13-correlated cerna network-directed inhibition on YAP/TAZ activity suppresses stemness of breast cancer via co-regulating hippo and rho-gtpase/f-actin signaling. J. Hematol. Oncol. 11:72, 2018.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Cancer Prevention and Research Institute of Texas CPRIT RP230204 “Gene-environment-lifestyle interactions in cancer” (SR), and NIH R37CA269224-01A1 (SR). This work was additionally supported by the Texas A&M Engineering Experiment Station and the Department of Biomedical Engineering at Texas A&M University. The authors acknowledge the assistance of Dr. Malea Murphy at the Integrated Microscopy and Imaging Laboratory at Texas A&M School of Medicine, RRID:SCR_021637. The authors also acknowledge the support from Steven Foncerrada and Sufiyan Sabir for assistance with protein quantification experiments. The authors acknowledge support from the Kopetz lab at MD Anderson, and Dr. Preeti Kanikarla for generating the PDX lines used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shreya A. Raghavan.

Ethics declarations

Conflict of interest

Abigail Clevenger, Maygan McFarlin, Claudia Collier, Vibha Sheshadri, Anirudh Madyastha, John Paul Gorley, Spencer Solberg, Amber Stratman, and Shreya Raghavan declare that they have no conflicts of interest.

Human Studies Statement

No human studies were carried out by the authors for this article.

Animal Studies Statement

No animal studies were carried out by the authors for this article.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the CMBE 2023 Young Innovators special issue.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3602 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clevenger, A.J., McFarlin, M.K., Collier, C.A. et al. Peristalsis-Associated Mechanotransduction Drives Malignant Progression of Colorectal Cancer. Cel. Mol. Bioeng. 16, 261–281 (2023). https://doi.org/10.1007/s12195-023-00776-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-023-00776-w

Keywords

Navigation