Skip to main content
Log in

Investigation of Newly Developed 5-Aminoisophthalate Capped Gold Nanoparticles for Degradation of Azo-Dyes

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The sodium salt of 5-aminoisothalate (5-AIT), which has –NH2 and –COONa+ functions, is a highly water-soluble compound. It was used as reducing and capping agents to develop AuNPs. When sodium borohydride (SBH) was not used as a reducing agent, the developed methodology resulted in particles that were larger in size (5-AIT-AuNPs-L, 14 ± 1.83 nm) than those obtained by the SBH-reduction method (5-AIT-AuNPs-S, 10 ± 2.03 nm). The surface plasmon resonance band for the smaller particles is centered at 520 nm, but it is positioned at 528 nm for the bigger particles. The particles have a wide window of pH tolerable range, i.e., pH 3–10. The capping agents adsorb onto the surface of particles, as evidenced by emission and the Raman spectroscopies and computation analysis. The binding energy increases with the increase of cluster atoms and it is –1.85 eV for 5-AIT-Au5 cluster. The efficacy of the particles as dye-degradation nanocatalysts for not only well-reputed dye, Methyl Orange (MO) but also synthetic promising dyes (Uazo-1 and Uazo-2) based on 6-aminouracil was assessed. The degradation kinetics follow pseudo-first-order reactions. According to the findings, the smaller particles degrade the dyes more rapidly than the larger particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Wessels, J.M., Nothofer, H.-G., Ford, W.E., von Wrochem, F., Scholz, F., Vossmeyer, T., Schroedter, A., Weller, H., and Yasuda, A., Optical and electrical properties of three-dimensional interlinked gold nanoparticle assemblies, J. Am. Chem. Soc., 2004, vol. 126, no. 10, pp. 3349–3356. https://doi.org/10.1021/ja0377605

    Article  CAS  PubMed  Google Scholar 

  2. Liu, X., Atwater, M., Wang, J., and Huo, Q., Extinction coefficient of gold nanoparticles with different sizes and different capping ligands, Colloids Surf., B, 2007, vol. 58, no. 1, pp. 3–7. https://doi.org/10.1016/j.colsurfb.2006.08.005

    Article  CAS  Google Scholar 

  3. Cure, J., Mattson, E., Cocq, K., Assi, H., Jensen, S., Tan, K., Catalano, M., Yuan, S., Wang, H., Feng, L., Zhang, P., Kwon, S., Veyan, J.-F., Cabrera, Y., Zhang, G., Li, J., Kim, M., Zhou, H.-C., Chabal, Y.J., and Thonhauser, T., High stability of ultra-small and isolated gold nanoparticles in metal–organic framework materials, J. Mater. Chem. A, 2019, vol. 7, pp. 17536–17546.

    Article  CAS  Google Scholar 

  4. Misra, T.K. and Liu, C.-Y., Synthesis of 28-membered macrocyclic polyammonium cations functionalized gold nanoparticles and their potential for sensing nucltides, J. Colloid Interface Sci., 2008, vol. 326, no. 2, pp. 411–419. https://doi.org/10.1016/j.jcis.2008.06.056

    Article  CAS  PubMed  Google Scholar 

  5. Khan, S.A. and Misra, T.K. Benzene-1,3-disulfonate capped gold nanoparticles: DFT computations in support of particles-capping agent and nano-sensing interactions, Nano-Struct. Nano-Objects, 2021, vol. 28, p. 100800. https://doi.org/10.1016/j.nanoso.2021.100800

    Article  CAS  Google Scholar 

  6. Khan, S.A. and Misra, T.K., Novel gluconate stabilized gold nanoparticles as a colorimetric sensor for quantitative evaluation of spermine, Colloids Surf., A, 2022, vol. 648, p. 129146. https://doi.org/10.1016/j.colsurfa.2022.129146

    Article  CAS  Google Scholar 

  7. Misra, T.K., Huang, K.-P., and Liu, C.-Y., Bioconjugation of 32-macrocyclic polyammonium cations-functionalized gold nanoparticles with BSA, J. Colloid Inteface Sci., 2010, vol. 344, no. 1, pp. 137–143. https://doi.org/10.1016/j.jcis.2009.12.031

    Article  CAS  Google Scholar 

  8. Zheng, J., Cheng, X., Zhang, H., Bai, X., Ai, R., Shao, L., and Wang, J., Gold nanorods: The most versatile plasmonic nanoparticles, Chem. Rev., 2021, vol. 121, no. 21, pp. 13342–13453. https://doi.org/10.1021/acs.chemrev.1c00422

    Article  CAS  PubMed  Google Scholar 

  9. Mujtaba, J., Liu, J., Dey, K. K., Li, T., Chakraborty, R., Xu, K., Makarov, D., Barmin, R.A., Gorin, D.A., Tolstoy, V.P., Huang, G., Solovev, A.A., and Mei, Y., Micro-bio-chemo-mechanical-systems: Micromotors, microfluidics, and nanozymes for biomedical applications, Adv. Mater., 2021, vol. 33, no. 22, p. 2007465. https://doi.org/10.1002/adma.202007465

    Article  CAS  Google Scholar 

  10. Nejati, K., Dadashpour, M., Gharibi, T., Mellatyar, H., and Akbarzadeh, A., Biomedical applications of functionalized gold nanoparticles: A review, J. Clust. Sci., 2022, vol. 33, pp. 1–16. https://doi.org/10.1007/s10876-020-01955-9

    Article  CAS  Google Scholar 

  11. Das, M., Shim, K.H., An, S.S.A., and Yi, D.K., Review on gold nanoparticles and their applications, J. Toxicol. Environ. Health Sci., 2011, vol. 3, pp. 193–205. https://doi.org/10.1007/s13530-011-0109-y

    Article  Google Scholar 

  12. Majumdar, M., Biswas, S.C., Choudhury, R., Upadhyay, P., Adhikary, A., Roy, D.N., and Misra, T.K., Synthesis of gold nanoparticles using Citrus macroptera fruit extract: Anti-biofilm and anticancer activity, ChemistrySelect, 2019, vol. 4, no. 19, pp. 5714–5723. https://doi.org/10.1002/slct.201804021

    Article  CAS  Google Scholar 

  13. Yoon, Y.-J., Kang, S.-H., Do, C., Moon, S.Y., and Kim, T.-H., Water-redispersible and highly stable gold nanoparticles permanently capped by charge-controllable surfactants for potential medical applications, ACS Appl. Nano Mater., 2019, vol. 2, no. 12, pp. 7924–7932. https://doi.org/10.1021/acsanm.9b01934

    Article  CAS  Google Scholar 

  14. Thompson, D.T., Using gold nanoparticles for catalysis, Nano Today, 2007, vol. 2, no. 4, pp. 40–43. https://doi.org/10.1016/S1748-0132(07)70116-0

    Article  Google Scholar 

  15. Alshammari, A.S., Heterogeneous gold catalysis: From discovery to applications, Catalysts, 2019, vol. 9, no. 5, p. 402. https://doi.org/10.3390/catal9050402

    Article  CAS  Google Scholar 

  16. Turkevich, J., Stevenson, P.C., and Hillier, J., A study of the nucleation and growth processes in the synthesis of colloidal gold, Discuss. Faraday Soc., 1951, vol. 11, p. 55–75.

    Article  Google Scholar 

  17. Phan, C.M. and Nguyen, H.M., Role of capping agent in wet synthesis of nanoparticles, J. Phys. Chem. A, 2017, vol. 121, no. 17, pp. 3213–3219. https://doi.org/10.1021/acs.jpca.7b02186

    Article  CAS  PubMed  Google Scholar 

  18. Chatterjee, P., Wang, H., Manzano, J.S., Kanbur, U., Sadow, A.D., and Slowing, I.I., Surface ligands enhance the catalytic activity of supported Au nanoparticles for the aerobic α-oxidation of amines to amides, Catal. Sci. Technol., 2022, vol. 12, p. 1922–1933. https://doi.org/10.1039/D1CY02121D

    Article  CAS  Google Scholar 

  19. Klein, R., Touraud, D., and Kunz, W., Choline carboxylate surfactants: Biocompatible and highly soluble in water, Green Chem., 2008, vol. 10, p. 433–435.

    Article  CAS  Google Scholar 

  20. Shahid, M., Shahid-ul-Islam, and Mohammad, F., Recent advancements in natural dye applications: A review, J. Cleaner Prod., 2013, vol. 53, pp. 310–331. https://doi.org/10.1016/j.jclepro.2013.03.031

    Article  CAS  Google Scholar 

  21. Benkhaya, S., M’rabet, S., and El Harfi, A., Classifications, properties, recent synthesis and applications of azo dyes, Heliyon, 2020, vol. 6, no. 1, p. e03271. https://doi.org/10.1016/j.heliyon.2020.e03271

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chung, K.-T., Azo dyes and human health: A review, J. Environ. Sci. Health, Part C, 2016, vol. 34, pp. 233–261. https://doi.org/10.1080/10590501.2016.1236602

    Article  CAS  Google Scholar 

  23. Kerkez, D., Bečelić-Tomin, M., Gvoić, V., and Dalmacija, B., Metal nanoparticles in dye wastewater treatment—smart solution for clear water, Recent Pat. Na-notechnol., 2021, vol. 15, no. 3, pp. 270–294. https://doi.org/10.2174/1872210515666210217091434

    Article  CAS  Google Scholar 

  24. Sha, Y., Mathew, I., Cui, Q., Clay, M., Gao, F., Zhang, X.J., and Gu, Z., Rapid degradation of azo dye Methyl Orange using hollow cobalt nanoparticles, Chemosphere, 2016, vol. 144, pp. 1530–1535. https://doi.org/10.1016/j.chemosphere.2015.10.040

    Article  CAS  PubMed  Google Scholar 

  25. Han, J., Zeng, H.-Y., Xu, S., Chen, C.-R., and Liu, X.-J., Catalytic properties of CuMgAlO catalyst and degradation mechanism in CWPO of Methyl Orange, Appl. Catal., A, 2016, vol. 527, pp. 72–80. https://doi.org/10.1016/j.apcata.2016.08.015

  26. Gomathi Devi, L., Girish Kumar, S., Mohan Reddy, K., and Munikrishnappa, C. Photo degradation of Methyl Orange an azo dye by Advanced Fenton Process using zero valent metallic iron: Influence of various reaction parameters and its degradation mechanism, J. Hazard. Mater., 2009, vol. 164, nos. 1–2, pp. 459–467. https://doi.org/10.1016/j.jhazmat.2008.08.017

    Article  CAS  PubMed  Google Scholar 

  27. Singh, R.K., Behera, S.S., Singh, K.R., Mishra, S., Panigrahi, B., Sahoo, T.R., Parhi, P.K., and Mandal, D, Biosynthesized gold nanoparticles as photocatalysts for selective degradation of cationic dye and their antimicrobial activity, J. Photochem. Photobiol., A, 2020, vol. 400, p. 112704. https://doi.org/10.1016/j.jphotochem.2020.112704

    Article  CAS  Google Scholar 

  28. Dheyab, M.A., Owaid, M.N., Rabeea, M.A., Aziz, A.A., and Jameel, M.S., Mycosynthesis of gold nanoparticles by the Portabello mushroom extract, Agaricaceae, and their efficacy for decolorization of Azo dye, Environ. Nanotechnol., Monit. Manage., 2020, vol. 14, p. 100312. https://doi.org/10.1016/j.enmm.2020.100312

    Article  Google Scholar 

  29. Nadaf, N.Y. and Kanase, S.S., Biosynthesis of gold nanoparticles by Bacillus marisflavi and its potential in catalytic dye degradation, Arabian J. Chem., 2019, vol. 12, no. 8, pp. 4806–4814. https://doi.org/10.1016/j.arabjc.2016.09.020

    Article  CAS  Google Scholar 

  30. Purkayastha, A., Dhar, S., Mondal, S.P., Franconet-ti, A., Frontera, A., Ganguly, R., Kirillov, A.M., and Misra, T.K., Metal-organic architectures driven by a multifunctional 6-aminouracil spacer: Structures, noncovalent interactions, and conductivity, CrystEngComm, 2020, vol. 22, no. 4, pp. 829–840. https://doi.org/10.1039/C9CE01437C

    Article  CAS  Google Scholar 

  31. Purkayastha, A., Debnath, D., Majumder, M., Ortega-Castro, J., Kirillov, A.M., Ganguly, R., Klak, J., Frontera, A., and Misra, T.K., Nickel(II) based homo- vs heterometallic 1D coordination polymers derived from a novel 6-aminouracil building block: Structures, topologies, non-covalent interactions, magnetism, and antibacterial activity, Inorg. Chim. Acta, 2018, vol. 482, pp. 384–394. https://doi.org/10.1016/j.ica.2018.06.037

    Article  CAS  Google Scholar 

  32. Marras, S.A.E., Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes, Nucleic Acids Res., 2002, vol. 30, no. 21, p. e122. https://doi.org/10.1093/nar/gnf121

    Article  PubMed  PubMed Central  Google Scholar 

  33. Choudhury, R., Purkayastha, A., Debnath, D., and Misra, T.K., Synthesis and study of aggregation kinetics of fluorescence active N-(1-naphthyl)ethylenediammonium cations functionalized silver nanoparticles for a chemo-sensor probe, J. Mol. Liq., 2017, vol. 238, pp. 96–105. https://doi.org/10.1016/j.molliq.2017.04.121

    Article  CAS  Google Scholar 

  34. Mallick, K., Witcomb, M.J., Dinsmore, A., and Scurrell, M.S., Polymerization of aniline by auric acid: Formation of gold decorated polyaniline nanoballs, Macromol. Rapid Commun., 2005, vol. 26, no. 4, pp. 232–235. https://doi.org/10.1002/marc.200400513

    Article  CAS  Google Scholar 

  35. Kalaiyarasan, G., Narendra Kumar, A.V., Sivakumar, C., and Joseph, J., Photoluminescence of oligomers of aniline-2-sulfonic acid formed in the presence of AuCl4 and sodium citrate: Application in the optical detection of hemoglobin, Sens. Actuators B, 2015, vol. 209, no. 31, pp. 883–888. https://doi.org/10.1016/j.snb.2014.12.041

    Article  CAS  Google Scholar 

  36. Allouche, F.-N., Yassaa, N., and Lounici, H., Sorption of Methyl Orange from aqueous solution on chitosan biomass, Procedia Earth Planet. Sci., 2015, vol. 15, pp. 596–601. https://doi.org/10.1016/j.proeps.2015.08.109

    Article  CAS  Google Scholar 

  37. Dergousova, E., Petrushanko, I., Klimanova, E., Mitkevich, V., Ziganshin, R., Lopina, O., and Makarov, A., Effect of reduction of redox modifications of cys-residues in the Na,K-ATPase α1-subunit on its activity, Biomolecules, 2017, vol. 7, no. 1, p. 18. https://doi.org/10.3390/biom7010018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rajput, P., Gupta, A., Potdar, S., and Zegenhagen, J., Compositional changes of CuxAu upon dealloying below the critical potential, J. Phys. Chem. C, 2016, vol. 120, no. 29, pp. 15949–15955. https://doi.org/10.1021/acs.jpcc.5b12446

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are thankful to the Department of Chemistry, NIT Agartala for providing research facilities. SAK is grateful to NIT Agartala for receiving institutional fellowship from MHRD, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarun Kumar Misra.

Ethics declarations

All authors declare that there are no competing interests on this research work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamim Ahmed Khan, Tarun Kumar Misra Investigation of Newly Developed 5-Aminoisophthalate Capped Gold Nanoparticles for Degradation of Azo-Dyes. Colloid J 85, 650–665 (2023). https://doi.org/10.1134/S1061933X22600622

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X22600622

Keywords:

Navigation