Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) August 11, 2023

Crystal structures of biocompatible Mg-, Zn-, and Co-whitlockites synthesized via one-step hydrothermal reaction

  • Sergey Yu. Stefanovich , Bogdan I. Lazoryak , Alexander M. Antipin , Anatoliy S. Volkov , Andrei I. Evdokimov , Olga A. Gurbanova , Olga V. Dimitrova and Dina V. Deyneko EMAIL logo

Abstract

Large-scale single crystals of Ca9Mg(PO4)6(PO3OH), Ca9Zn(PO4)6(PO3OH), and Ca9Co(PO4)6(PO3OH) were synthesized using hydrothermal technique, and turned out to be similar to natural bone whitlockite. The hexagonal single crystals about 1 mm with high-quality were obtained with this method for the first time. The crystals were of sufficiently good quality for the precision X-ray structural investigation. The compounds crystallize in usual for this structural type trigonal space group R3c. Presence of hydrogen atom in the structure was confirmed by means of infra-red (IR) spectroscopy, differential scanning calorimetry (DSC) and differential thermogravimetry (DTG) methods. Based on the analysis of the local bond valence sum (BVS), a conclusion on the localization of H atoms was made. The formation of O–H groups and hydrogen bonds H⋯O in vicinity of PO4 tetrahedra was shown and similar to bone whitlockite. This research provides new data on possibility of using hydrothermal technique for obtaining doped bone whitlockites. Hydrogen-containing doped whitlockites can combine bioactive properties and improve biocompatibility due to similarity to natural bond. New structural data are useful for finding the ways to better biocompatibility of whitlockite-based materials.


Corresponding author: Dina V. Deyneko, Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; and Laboratory of Arctic Mineralogy and Material Sciences, Kola Science Centre, Russian Academy of Sciences, 184209 Apatity, Russia, E-mail:

Award Identifier / Grant number: 23-33-00270

Funding source: Scholarship of the President of Russia Federation

Award Identifier / Grant number: СП-859.2021.1

Funding source: Development Program of the Interdisciplinary Scientific and Educational School of Lomonosov Moscow State University’s

Funding source: Chemistry Department of Moscow State University

Award Identifier / Grant number: АААА-А21-121011590086-0

Funding source: Russian Federation

Award Identifier / Grant number: 122011300125-2

Acknowledgment

A.S.V. is grateful to the Institute of Geology and Geochemistry of Ural Branch of RAS for the possibility of taking measurements on FT-IR spectrometer. IR spectroscopy measurements were performed in Common Use Center of the Ural Branch of RAS “Geoanalyst”. The single crystals X-ray diffraction study was performed within the State Assignment of FSRC “Crystallography and Photonics” RAS in part of X-ray diffraction studies. The single crystals X-ray diffraction study was performed using the equipment of the Shared Research Center FSRC.

  1. Author contributions: The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

  2. Research funding: The study was supported by Russian Science Foundation (Project No. 23-23-00270). D.V.D. is grateful to the Scholarship of the President of Russia Federation (СП-859.2021.1). The study was supported by the Development Program of the Interdisciplinary Scientific and Educational School of Lomonosov Moscow State University’s “The future of the planet and global environmental change” and the state assignment of the Chemistry Department of Moscow State University (Agreement No. АААА-А21-121011590086-0). The X-ray study was carried out in accordance with the state of the Russian Federation, state registration number 122011300125-2.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Abbreviations

WH

whitlockite

HAp

hydroxyapatite

DSC

differential scanning calorimetry

DTG

differential thermogravimetry

BVS

Bond-valence sum calculations

PXRD

powder X-ray diffraction

IR

infra-red

References

1. Calvo, C., Gopal, R. The crystal structure of whitlockite from the Palermo Quarry. Am. Mineral. 1975, 60, 120–133.Search in Google Scholar

2. Frondel, C. Whitlockite: a new calcium phosphate, Ca3(PO4)2. Am. Mineral. 1941, 26, 145–152.Search in Google Scholar

3. Dickens, B., Schroeder, L. W., Brown, W. E. Crystallographic studies of the role of Mg as a stabilizing impurity in β-Ca3(PO4)2. The crystal structure of pure β-Ca3(PO4)2. J. Solid State Chem. 1974, 10, 232–248; https://doi.org/10.1016/0022-4596(74)90030-9.Search in Google Scholar

4. Gopal, R., Calvo, C. Crystal structure of Ca3(AsO4)2. Can. J. Chem. 1971, 49, 1036–1046; https://doi.org/10.1139/v71-173.Search in Google Scholar

5. Gopal, R., Calvo, C. The structure of Ca3(VO4)2. Z. Kristallogr. 1973, 137, 67–85; https://doi.org/10.1524/zkri.1973.137.16.67.Search in Google Scholar

6. Lazoryak, B. I., Morozov, V. A., Belik, A. A., Stefanovich, S. Y., Grebenev, V. V., Leonidov, I. A., Mitberg, E. B., Davydov, S. A., Lebedev, O. I., Van Tendeloo, G. Ferroelectric phase transition in the whitlockite-type Ca9Fe(PO4)7; crystal structure of the paraelectric phase at 923 K. Solid State Sci. 2004, 6, 185–195; https://doi.org/10.1016/j.solidstatesciences.2003.12.007.Search in Google Scholar

7. Belik, A. A., Morozov, V. A., Deyneko, D. V., Savon, A. E., Baryshnikova, O. V., Zhukovskaya, E. S., Dorbakov, N. G., Katsuya, Y., Tanaka, M., Stefanovich, S. Y., Hadermann, J., Lazoryak, B. I. Antiferroelectric properties and site occupations of R3+ cations in Ca8MgR(PO4)7 luminescent host materials. J. Alloys Compd. 2017, 699, 928–937; https://doi.org/10.1016/j.jallcom.2016.12.288.Search in Google Scholar

8. Dorbakov, N. G., Baryshnikova, O. V., Morozov, V. A., Belik, A. A., Katsuya, Y., Tanaka, M., Stefanovich, S. Y., Lazoryak, B. I., Lazoryak, B. I. Tuning of nonlinear optical and ferroelectric properties via the cationic composition of Ca9.5−1.5xBixCd(VO4)7 solid solutions. Mater. Des. 2017, 116, 515–523; https://doi.org/10.1016/j.matdes.2016.11.107.Search in Google Scholar

9. Dikhtyar, Y. Y., Deyneko, D. V., Spassky, D. A., Lazoryak, B. I., Stefanovich, S. Y. A novel high color purity blue-emitting Tm3+-doped β-Ca3(PO4)2-type phosphor for WLED application. Optik (Stuttg.) 2021, 227, 166027; https://doi.org/10.1016/j.ijleo.2020.166027.Search in Google Scholar

10. Wu, X., Huang, Y., Shi, L., Seo, H. J. Spectroscopy characteristics of vanadate Ca9Dy(VO4)7 for application of white-light-emitting diodes. Mater. Chem. Phys. 2009, 116, 449–452; https://doi.org/10.1016/j.matchemphys.2009.04.002.Search in Google Scholar

11. Kim, H. D., Jang, H. L., Ahn, H.-Y., Lee, H. K., Park, J., Lee, E., Lee, E. A., Jeong, Y.-H., Kim, D.-G., Nam, K. T., Hwang, N. S. Biomimetic whitlockite inorganic nanoparticles-mediated in situ remodeling and rapid bone regeneration. Biomaterials 2017, 112, 31–43; https://doi.org/10.1016/j.biomaterials.2016.10.009.Search in Google Scholar PubMed

12. Deyneko, D. V., Fadeeva, I. V., Borovikova, E. Y., Dzhevakov, P. B., Slukin, P. V., Zheng, Y., Xia, D., Lazoryak, B. I., Rau, J. V. Antimicrobial properties of co-doped tricalcium phosphates Ca3−2x(M′M″)x(PO4)2 (M = Zn2+, Cu2+, Mn2+ and Sr2+). Ceram. Int. 2022, 48, 29770–29781; https://doi.org/10.1016/j.ceramint.2022.06.237.Search in Google Scholar

13. Jang, H. L., Zheng, G. B., Park, J., Kim, H. D., Baek, H.-R., Lee, H. K., Lee, K., Han, H. N., Lee, C.-K., Hwang, N. S., Lee, J. H., Nam, K. T. In vitro and in vivo evaluation of whitlockite biocompatibility: comparative study with hydroxyapatite and β-tricalcium phosphate. Adv. Healthc. Mater. 2016, 5, 128–136; https://doi.org/10.1002/adhm.201400824.Search in Google Scholar PubMed

14. Jarcho, M., Salsbury, R. L., Thomas, M. B., Doremus, R. H. Synthesis and fabrication of β-tricalcium phosphate (whitlockite) ceramics for potential prosthetic applications. J. Mater. Sci. 1979, 14, 142–150; https://doi.org/10.1007/BF01028337.Search in Google Scholar

15. Jang, H. L., Jin, K., Lee, J., Kim, Y., Nahm, S. H., Hong, K. S., Nam, K. T. Revisiting whitlockite, the second most abundant biomineral in bone: nanocrystal synthesis in physiologically relevant conditions and biocompatibility evaluation. ACS Nano 2014, 8, 634–641; https://doi.org/10.1021/nn405246h.Search in Google Scholar PubMed

16. Kizalaite, A., Grigoraviciute-Puroniene, I., Asuigui, D. R. C., Stoll, S. L., Cho, S. H., Sekino, T., Kareiva, A., Zarkov, A. Dissolution-precipitation synthesis and characterization of zinc whitlockite with variable metal content. ACS Biomater. Sci. Eng. 2021, 7, 3586–3593; https://doi.org/10.1021/acsbiomaterials.1c00335.Search in Google Scholar PubMed PubMed Central

17. Tao, J., Jiang, W., Zhai, H., Pan, H., Xu, X., Tang, R. Structural components and anisotropic dissolution behaviors in one hexagonal single crystal of β-tricalcium phosphate. Cryst. Growth Des. 2008, 8, 2227–2234; https://doi.org/10.1021/cg700808h.Search in Google Scholar

18. Deyneko, D. V., Aksenov, S. M., Morozov, V. A., Stefanovich, S. Y., Dimitrova, O. V., Barishnikova, O. V., Lazoryak, B. I. A new hydrogen-containing whitlockitetype phosphate Ca9(Fe0.63Mg0.37)H0.37(PO4)7: hydrothermal synthesis and structure. Z. Kristallogr. 2014, 229, 823–830; https://doi.org/10.1515/zkri-2014-1774.Search in Google Scholar

19. Kostiner, E., Rea, J. R. The crystal structure of manganese-whitlockite, Ca18Mn2H2(PO4)14. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1976, 32, 250–253; https://doi.org/10.1107/S0567740876002690.Search in Google Scholar

20. Toyama, T., Nakashima, K., Yasue, T. Hydrothermal synthesis of β-tricalcium phosphate from amorphous calcium phosphate. J. Ceram. Soc. Jpn. 2002, 110, 716–721; https://doi.org/10.2109/jcersj.110.716.Search in Google Scholar

21. Batool, S., Liaqat, U., Hussain, Z., Sohail, M. Synthesis, characterization and process optimization of bone whitlockite. Nanomaterials 2020, 10, 1–14; https://doi.org/10.3390/nano10091856.Search in Google Scholar PubMed PubMed Central

22. Tas, A. C. Transformation of brushite (CaHPO4·2H2O) to whitlockite (Ca9Mg(HPO4)(PO4)6) or other CaPs in physiologically relevant solutions. J. Am. Ceram. Soc. 2016, 99, 1200–1206; https://doi.org/10.1111/jace.14069.Search in Google Scholar

23. Konishi, T., Watanabe, S. Copper whitlockite synthesized via hydrothermal transformation of calcium hydrogen phosphate dihydrate. Phosphorus Res. Bull. 2022, 38, 18–24; https://doi.org/10.3363/prb.38.18.Search in Google Scholar

24. Kizalaite, A., Klimavicius, V., Versockiene, J., Lastauskiene, E., Murauskas, T., Skaudzius, R., Yokoi, T., Kawashita, M., Goto, T., Sekino, T., Zarkov, A. Peculiarities of the formation, structural and morphological properties of zinc whitlockite (Ca18Zn2(HPO4)2(PO4)12) synthesized via a phase transformation process under hydrothermal conditions. CrystEngComm 2022, 24, 5068–5079; https://doi.org/10.1039/d2ce00497f.Search in Google Scholar

25. Schamel, M., Bernhardt, A., Quade, M., Würkner, C., Gbureck, U., Moseke, C., Gelinsky, M., Lode, A. Cu2+, Co2+ and Cr3+ doping of a calcium phosphate cement influences materials properties and response of human mesenchymal stromal cells. Mater. Sci. Eng. C 2017, 73, 99–110; https://doi.org/10.1016/j.msec.2016.12.052.Search in Google Scholar PubMed

26. Srinivasan, B., Kolanthai, E., Nivethaa, E. A. K., Pandian, M. S., Ramasamy, P., Catalani, L. H., Kalkura, S. N. Enhanced in vitro inhibition of MCF-7 and magnetic properties of cobalt incorporated calcium phosphate (HAp and β-TCP) nanoparticles. Ceram. Int. 2023, 49, 855–861; https://doi.org/10.1016/j.ceramint.2022.09.058.Search in Google Scholar

27. Singh, R. K., Srivastava, M., Prasad, N. K., Kannan, S. Structural analysis and hyperthermia effect of Fe3+/Ni2+ co-substitutions in β-Ca3(PO4)2. J. Alloys Compd. 2017, 725, 393–402.10.1016/j.jallcom.2017.07.113Search in Google Scholar

28. Galuskin, E., Stachowicz, M., Galuskina, I. O., Woźniak, K., Vapnik, Y., Murashko, N. N., Zieliński, G. Deynekoite, IMA 2021-108. Mineral. Mag. 2022, 86, 359–362; https://doi.org/10.1180/mgm.2022.33.Search in Google Scholar

29. Clark, R. C., Reid, J. S. The analytical calculation of absorption in multifaceted crystals. Acta Crystallogr. Sect. A Found. Crystallogr. 1995, 51, 887–897; https://doi.org/10.1107/S0108767395007367.Search in Google Scholar

30. Agilent Technologies. CrysAlis Pro Software System, 2013.Search in Google Scholar

31. Petricek, V., Dusek, M., Palatinus, L., Petrícek, V., Dušek, M., Palatinus, L. Crystallographic computing system Jana2006: general features. Z. Kristallogr. 2014, 229, 345–352; https://doi.org/10.1515/zkri-2014-1737.Search in Google Scholar

32. Palatinus, L. Ab initio determination of incommensurately modulated structures by charge flipping in superspace. Acta Crystallogr. Sect. A Found. Crystallogr. 2004, 60, 604–610; https://doi.org/10.1107/S0108767304022433.Search in Google Scholar PubMed

33. Kurtz, S. K., Perry, T. T. A powder technique for the evaluation of nonlinear optical materials. J. Appl. Phys. 1968, 39, 3798–3813; https://doi.org/10.1063/1.1656857.Search in Google Scholar

34. Matsunaga, K., Kubota, T., Toyoura, K., Nakamura, A. Acta biomaterialia first-principles calculations of divalent substitution of Ca2+ in tricalcium phosphates. Acta Biomater. 2015, 23, 329–337; https://doi.org/10.1016/j.actbio.2015.05.014.Search in Google Scholar PubMed

35. Frasnelli, M., Sglavo, V. M. Effect of Mg2+ doping on beta–alpha phase transition in tricalcium phosphate (TCP) bioceramics. Acta Biomater. 2016, 33, 283–289; https://doi.org/10.1016/j.actbio.2016.01.015.Search in Google Scholar PubMed

36. Britvin, S. N., Galuskina, I. O., Vlasenko, N. S., Vereshchagin, O. S., Bocharov, V. N., Krzhizhanovskaya, M. G., Shilovskikh, V. V., Galuskin, E. V., Vapnik, Y., Obolonskaya, E. V. Keplerite, Ca9(Ca0.5☐0.5)Mg(PO4)7, a new meteoritic and terrestrial phosphate isomorphous with merrillite, Ca9NaMg(PO4)7. Am. Mineral. 2021, 106, 1917–1927; https://doi.org/10.2138/am-2021-7834.Search in Google Scholar

37. Gopal, R., Calvo, C., Ito, J., Sabine, W. K. Crystal structure of synthetic Mg-whitlockite, Ca18Mg2H2(PO4)14. Can. J. Chem. 1974, 52, 1155–1164; https://doi.org/10.1139/v74-181.Search in Google Scholar

38. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767; https://doi.org/10.1107/S0567739476001551.Search in Google Scholar

39. Yashima, M., Sakai, A., Kamiyama, T., Hoshikawa, A. Crystal structure analysis of β-tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction. J. Solid State Chem. 2003, 175, 272–277; https://doi.org/10.1016/S0022-4596(03)00279-2.Search in Google Scholar

40. Voronina, I. S., Dunaeva, E. E., Papashvili, A. G., Doroshenko, M. E., Ivleva, L. I. Modification of calcium orthovanadate single crystal due to cobalt doping. J. Cryst. Growth 2023, 615, 127242; https://doi.org/10.1016/j.jcrysgro.2023.127242.Search in Google Scholar

41. Belik, A., Morozov, V., Khasanov, S., Lazoryak, B. Crystal structures of new double calcium and cobalt phosphates. Mater. Res. Bull. 1998, 33, 987–995; https://doi.org/10.1016/S0025-5408(98)00083-X.Search in Google Scholar

42. International Centre for Diffraction Data. PDF-4+ No 04-010-2972.Search in Google Scholar

43. International Centre for Diffraction Data. PDF-4+ No 04-020-2028.Search in Google Scholar

44. Wang, J., Qian, J., Xu, W., Wang, Y., Hou, G., Sun, T., Luo, L. Effects of Sr2+/Zn2+ co-substitution on crystal structure and properties of nano-β-tricalcium phosphate. Ceram. Int. 2018, 44, 6096–6103; https://doi.org/10.1016/j.ceramint.2017.12.242.Search in Google Scholar

45. Melnikov, P., de Albuquerque, D. M., Naves, T. A., de Oliveira, L. C. S. Synthesis and characterization of zinc-containing whitlockite Ca10Zn10H2(PO4)14 for orthopedic applications. Mater. Lett. 2018, 231, 198–200; https://doi.org/10.1016/j.matlet.2018.08.051.Search in Google Scholar

46. Stähli, C., Thüring, J., Galea, L., Tadier, S., Bohner, M., Döbelin, N. Hydrogen-substituted β-tricalcium phosphate synthesized in organic media. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 875–884; https://doi.org/10.1107/S2052520616015675.Search in Google Scholar PubMed PubMed Central

47. Brown, I. D., Altermatt, D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr. Sect. B Struct. Sci. 1985, 41, 244–247; https://doi.org/10.1107/S0108768185002063.Search in Google Scholar

48. Brese, N. E., O’Keeffe, M. Bond-valence parameters for solids. Acta Crystallogr. Sect. B Struct. Sci. 1991, 47, 192–197; https://doi.org/10.1107/S0108768190011041.Search in Google Scholar

49. Hughes, J. M., Jolliff, B. L., Rakovan, J. The crystal chemistry of whitlockite and merrillite and the dehydrogenation of whitlockite to merrillite. Am. Mineral. 2008, 93, 1300–1305; https://doi.org/10.2138/am.2008.2683.Search in Google Scholar

50. Sinusaite, L., Kareiva, A., Zarkov, A. Thermally induced crystallization and phase evolution of amorphous calcium phosphate substituted with divalent cations having different sizes. Cryst. Growth Des. 2021, 21, 1242–1248; https://doi.org/10.1021/acs.cgd.0c01534.Search in Google Scholar

51. Capitelli, F., Bosi, F., Capelli, S. C., Radica, F., Ventura, G. Della neutron and XRD single-crystal diffraction study and vibrational properties of whitlockite, the natural counterpart of synthetic tricalcium phosphate. Crystals 2021, 11, 1–19; https://doi.org/10.3390/cryst11030225.Search in Google Scholar

52. Belik, A. A., Izumi, F., Stefanovich, S. Y., Lazoryak, B. I., Oikawa, K. Chemical and structural properties of a whitlockite-like phosphate, Ca9FeD(PO4)7. Chem. Mater. 2002, 14, 3937–3945; https://doi.org/10.1021/cm033000h.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zkri-2023-0016).


Received: 2023-02-22
Accepted: 2023-07-11
Published Online: 2023-08-11
Published in Print: 2023-09-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2023-0016/html
Scroll to top button