Skip to main content
Log in

Simultaneous Electrocatalytic Measurement of Dopamine and Acetaminophen by Nanosensor Based on Ag@Polyoxometalate@Reduced Graphene Oxide and Ionic Liquid

  • Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

A novel electrochemical nanosensor was established for the simultaneous measurement of dopamine (DA) and acetaminophen (AC). The nanosensor was achieved by modification of carbon paste electrode (CPE) by Ag nanoparticle, polyoxometalate, reduced graphene oxide (Ag@POM@rGO), and ionic liquid (IL). The electrochemical behaviors of DA and AC were evaluated by Ag@POM@rGO-IL/CPE and various electrochemical methods. Design-Expert software by response surface methodology (RSM) approach was utilized to consider the interaction between the different factors. The best electrochemical response was attained with 0.01 g of IL and 0.04 g of Ag@POM@rGO in the modified electrode, phosphate buffer solution (0.1 M, pH 7.0), and a sweep rate of 0.07 V s−1. In the optimum situation, the calibration curves for DA and AC were achieved in a square wave voltammetry (SWV) manner, and linear dynamic ranges (LDR) were obtained to be 0.05–115.04 µM and 0.1–137.90 µM for DA and AC, respectively. The limit of detection (LOD) was attained to be 17.0 for DA and 37.0 nM for AC. The Ag@POM@rGO-IL/CPE showed good stability, productivity and repeatability, and advanced recovery, and it has a little price and low background current. Also, the usage of this nanosensor was studied by measuring the DA and AC in the human plasma by means of worthy recovery. This technique is easy, rapid, and cheap and can be utilized as a significant device in the quantitative analysis of the medicinal product.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  1. J. Shashikumara, B.K. Swamy, Electrochemical investigation of dopamine in presence of uric acid and ascorbic acid at poly (reactive blue) modified carbon paste electrode: a voltammetric study. Sens. Int. 1, 100008 (2020)

    Article  Google Scholar 

  2. S.A. Zaidi, Development of molecular imprinted polymers based strategies for the determination of dopamine. Sens. Actuators, B Chem. 265, 488–497 (2018)

    Article  CAS  Google Scholar 

  3. O.C. Ozoemena, L.J. Shai, T. Maphumulo, K.I. Ozoemena, Electrochemical sensing of dopamine using onion-like carbons and their carbon nanofiber composites. Electrocatalysis 10, 381–391 (2019)

    Article  CAS  Google Scholar 

  4. G.T. Gnahore, T. Velasco-Torrijos, J. Colleran, The selective electrochemical detection of dopamine using a sulfated β-cyclodextrin carbon paste electrode. Electrocatalysis 8, 459–471 (2017)

    Article  CAS  Google Scholar 

  5. C. Luhana, P. Mashazi, Simultaneous detection of dopamine and paracetamol on electroreduced graphene oxide–cobalt phthalocyanine polymer nanocomposite electrode. Electrocatalysis 14(3), 406–417 (2023)

    Article  CAS  Google Scholar 

  6. S. Mahalakshmi, V. Sridevi, In situ electrodeposited gold nanoparticles on polyaniline-modified electrode surface for the detection of dopamine in presence of ascorbic acid and uric acid. Electrocatalysis 12, 415–435 (2021)

    Article  CAS  Google Scholar 

  7. S. Tajik, Z. Dourandish, F.G. Nejad, A. Aghaei Afshar, H. Beitollahi, Voltammetric determination of isoniazid in the presence of acetaminophen utilizing MoS2-nanosheet-modified screen-printed electrode. Micromachines 13(3), 369 (2022)

  8. S.K. Hassaninejad-Darzi, F. Shajie, Simultaneous determination of acetaminophen, pramipexole and carbamazepine by ZSM-5 nanozeolite and TiO2 nanoparticles modified carbon paste electrode. Mater. Sci. Eng., C 91, 64–77 (2018)

    Article  CAS  Google Scholar 

  9. M.A. Al-Gharibi, H.H. Kyaw, J.N. Al-Sabahi, M.T.Z. Myint, Z.A. Al-Sharji, M.Z. Al-Abri, Silver nanoparticles decorated zinc oxide nanorods supported catalyst for photocatalytic degradation of paracetamol. Mater. Sci. Semicond. Process. 134, 105994 (2021)

    Article  CAS  Google Scholar 

  10. R. Shanmuganathan, I. Karuppusamy, M. Saravanan, H. Muthukumar, K. Ponnuchamy, V.S. Ramkumar, A. Pugazhendhi, Synthesis of silver nanoparticles and their biomedical applications-a comprehensive review. Curr. Pharm. Des. 25(24), 2650–2660 (2019)

    Article  CAS  PubMed  Google Scholar 

  11. B. Hasenknopf, Polyoxometalates: introduction to a class of inorganic compounds and their biomedical applications. Frontiers in Bioscience-Landmark 10(1), 275–287 (2005)

    Article  CAS  Google Scholar 

  12. J. Wu, S. Wu, W. Sun, Electropolymerization and application of polyoxometalate-doped polypyrrole film electrodes in dye-sensitized solar cells. Electrochem. Commun. 122, 106879 (2021)

    Article  CAS  Google Scholar 

  13. N. Li, J. Liu, B.X. Dong, Y.Q. Lan, Polyoxometalate-based compounds for photo-and electrocatalytic applications. Angew. Chem. Int. Ed. 59(47), 20779–20793 (2020)

    Article  CAS  Google Scholar 

  14. R. Tarcan, O. Todor-Boer, I. Petrovai, C. Leordean, S. Astilean, I. Botiz, Reduced graphene oxide today. J. Mater. Chem. C 8(4), 1198–1224 (2020)

    Article  CAS  Google Scholar 

  15. A. Shanmugasundaram, V. Gundimeda, T. Hou, D.W. Lee, Realizing synergy between In2O3 nanocubes and nitrogen-doped reduced graphene oxide: an excellent nanocomposite for the selective and sensitive detection of CO at ambient temperatures. ACS Appl. Mater. Interfaces. 9(37), 31728–31740 (2017)

    Article  CAS  PubMed  Google Scholar 

  16. F. Chen, B. Fang, S. Wang, A fast and validated HPLC method for simultaneous determination of dopamine, dobutamine, phentolamine, furosemide, and aminophylline in infusion samples and injection formulations. J. Anal. Methods. Chem. 2021, (2021)

  17. I.-C. Stratigou, A. Tsiasioti, P.D. Tzanavaras, C.K. Markopoulou, K. Fytianos, C.K. Zacharis, Homogeneous liquid liquid extraction using salt as mass separating agent for the ultra high pressure liquid chromatographic determination of doxorubicin in human urine. Microchem. J. 158, 105260 (2020)

    Article  CAS  Google Scholar 

  18. X. Li, X. Liu, Y. Liu, R. Gao, X. Wu, X. Gao, Highly sensitive detection of dopamine based on gold nanoflowers enhanced-Tb (III) fluorescence. Talanta 249, 123700 (2022)

    Article  CAS  PubMed  Google Scholar 

  19. A. Leroy, J. Teixidor, A. Bertsch, P. Renaud, In-flow electrochemical detection of chemicals in droplets with pyrolysed photoresist electrodes: application as a module for quantification of microsampled dopamine. Lab Chip 21(17), 3328–3337 (2021)

    Article  CAS  PubMed  Google Scholar 

  20. A. Roychoudhury, K.A. Francis, J. Patel, S.K. Jha, S. Basu, A decoupler-free simple paper microchip capillary electrophoresis device for simultaneous detection of dopamine, epinephrine and serotonin. RSC Adv. 10(43), 25487–25495 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. R. Li, D. Zhang, X. Li, H. Qi, Sensitive and selective electrogenerated chemiluminescence aptasensing method for the determination of dopamine based on target-induced conformational displacement. Bioelectrochemistry 146, 108148 (2022)

    Article  CAS  PubMed  Google Scholar 

  22. M.A.A. Felipe, Offline machine learning-based concurrent and rapid determination of acetaminophen, dextromethorphan, guaifenesin, and phenylephrine using UV-vis spectroscopy, (2021)

  23. J. Shiea, S.M. Bhat, H. Su, V. Kumar, C.W. Lee, C.H. Wang, Rapid quantification of acetaminophen in plasma using solid-phase microextraction coupled with thermal desorption electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 34, e8564 (2020)

    Article  CAS  PubMed  Google Scholar 

  24. S. Sonchai, C. Phechkrajang, P. Rojsanga, Pharmaceutical Sciences Asia

  25. M. Ebrahimi, M.R. Sohrabi, F. Motiee, M. Davallo, Rapid simultaneous spectrophotometric determination of acetaminophen, phenylephrine, and guaifenesin in a cold syrup formulation based on continuous wavelet transform and first derivative transform methods. Optik 230, 166323 (2021)

    Article  CAS  Google Scholar 

  26. Y. Hadef, A. Nekkaa, F. Titel, F. Dalia, Cost-effective and earth-friendly chemometrics-assisted spectrophotometric methods for simultaneous determination of acetaminophen and ascorbic acid in pharmaceutical formulation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 266, 120422 (2022)

    Article  Google Scholar 

  27. A.A. Al-rashdi, O. Farghaly, A. Naggar, Voltammetric determination of pharmaceutical compounds at bare and modified solid electrodes: a review. J. Chem. Pharm. Res 10, 21–43 (2018)

    CAS  Google Scholar 

  28. S. Chen, C. Wang, M. Zhang, W. Zhang, J. Qi, X. Sun, L. Wang, J. Li, N-doped Cu-MOFs for efficient electrochemical determination of dopamine and sulfanilamide. J. Hazard. Mater. 390, 122157 (2020)

    Article  CAS  PubMed  Google Scholar 

  29. X. Xie, D.P. Wang, C. Guo, Y. Liu, Q. Rao, F. Lou, Q. Li, Y. Dong, Q. Li, H.B. Yang, Single-atom ruthenium biomimetic enzyme for simultaneous electrochemical detection of dopamine and uric acid. Anal. Chem. 93(11), 4916–4923 (2021)

    Article  CAS  PubMed  Google Scholar 

  30. R.S. Kumar, K. Govindan, S. Ramakrishnan, A.R. Kim, J.-S. Kim, D.J. Yoo, Fe3O4 nanorods decorated on polypyrrole/reduced graphene oxide for electrochemical detection of dopamine and photocatalytic degradation of acetaminophen. Appl. Surf. Sci. 556, 149765 (2021)

    Article  Google Scholar 

  31. P. Dhiman, A. Kumar, M. Shekh, G. Sharma, G. Rana, D.-V.N. Vo, N. AlMasoud, M. Naushad, Z.A. ALOthman, Robust magnetic ZnO-Fe2O3 Z-scheme hetereojunctions with in-built metal-redox for high performance photo-degradation of sulfamethoxazole and electrochemical dopamine detection. Environ. Res. 197, 111074 (2021)

  32. S.A. Hira, S. Nagappan, D. Annas, Y.A. Kumar, K.H. Park, NO2-functionalized metal–organic framework incorporating bimetallic alloy nanoparticles as a sensor for efficient electrochemical detection of dopamine. Electrochem. Commun. 125, 107012 (2021)

    Article  CAS  Google Scholar 

  33. J. Liu, L. Sun, G. Li, J. Hu, Q. He, Ultrasensitive detection of dopamine via electrochemical route on spindle-like α-Fe2O3 Mesocrystals/rGO modified GCE. Mater. Res. Bull. 133, 111050 (2021)

    Article  Google Scholar 

  34. F. de Matos Morawski, B.B. Xavier, A.H. Virgili, K. dos Santos Caetano, E.W. de Menezes, E.V. Benvenutti, T.M.H. Costa, L.T. Arenas, A novel electrochemical platform based on mesoporous silica/titania and gold nanoparticles for simultaneous determination of norepinephrine and dopamine. Mater. Sci. Eng., C 120, 111646 (2021)

  35. Q.A. Moallem, H. Beitollahi, Electrochemical sensor for simultaneous detection of dopamine and uric acid based on a carbon paste electrode modified with nanostructured Cu-based metal-organic frameworks. Microchem. J. 177, 107261 (2022)

    Article  Google Scholar 

  36. K. Annadurai, V. Sudha, G. Murugadoss, R. Thangamuthu, Electrochemical sensor based on hydrothermally prepared nickel oxide for the determination of 4-acetaminophen in paracetamol tablets and human blood serum samples. J. Alloy. Compd. 852, 156911 (2021)

    Article  CAS  Google Scholar 

  37. N.S. Anuar, W.J. Basirun, M. Ladan, M. Shalauddin, M.S. Mehmood, Fabrication of platinum nitrogen-doped graphene nanocomposite modified electrode for the electrochemical detection of acetaminophen. Sens. Actuators, B Chem. 266, 375–383 (2018)

    Article  CAS  Google Scholar 

  38. L. Ahmadpour-Mobarakeh, A. Nezamzadeh-Ejhieh, A zeolite modified carbon paste electrode as useful sensor for voltammetric determination of acetaminophen. Mater. Sci. Eng., C 49, 493–499 (2015)

    Article  CAS  Google Scholar 

  39. H. Beitollahi, F. Garkani-Nejad, S. Tajik, M.R. Ganjali, Voltammetric determination of acetaminophen and tryptophan using a graphite screen printed electrode modified with functionalized graphene oxide nanosheets within a Fe3O4@ SiO2 nanocomposite. Iranian Journal of Pharmaceutical Research: IJPR 18(1), 80 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. A.A. Ensafi, N. Ahmadi, B. Rezaei, M.M. Abarghoui, A new electrochemical sensor for the simultaneous determination of acetaminophen and codeine based on porous silicon/palladium nanostructure. Talanta 134, 745–753 (2015)

    Article  CAS  PubMed  Google Scholar 

  41. P. Batista Deroco, F. Campanhã Vicentini, O. Fatibello‐Filho, An electrochemical sensor for the simultaneous determination of paracetamol and codeine using a glassy carbon electrode modified with nickel oxide nanoparticles and carbon black. Electroanalysis 27(9), 2214–2220 (2015)

  42. T. Zhu, H. Ren, W. Liang, Y. Li, Y. Xu, M. Dai, B.-C. Ye, Ratiometric electrochemical sensing based on Mo 2 C for detection of acetaminophen. Analyst 145(23), 7609–7615 (2020)

    Article  CAS  PubMed  Google Scholar 

  43. M. Ghadirinataj, S.K. Hassaninejad-Darzi, H. Emadi, An electrochemical nanosensor for simultaneous quantification of acetaminophen and acyclovir by ND@ Dy2O3-IL/CPE. Electrochimica. Acta. 450, 142274 (2023)

    Article  CAS  Google Scholar 

  44. H. Shafiei, S.K. Hassaninejad-Darzi, Electroanalytical application of Ag@ POM@ rGO nanocomposite and ionic liquid modified carbon paste electrode for the quantification of ciprofloxacin antibiotic. J. Electroanal. Chem. 935, 117321 (2023)

    Article  CAS  Google Scholar 

  45. R. Liu, Z. Xian, S. Zhang, C. Chen, Z. Yang, H. Li, W. Zheng, G. Zhang, H. Cao, Electrochemical-reduction-assisted assembly of ternary Ag nanoparticles/polyoxometalate/graphene nanohybrids and their activity in the electrocatalysis of oxygen reduction. RSC Adv. 5(91), 74447–74456 (2015)

    Article  CAS  Google Scholar 

  46. N. Belachew, D.S. Meshesha, K. Basavaiah, Green syntheses of silver nanoparticle decorated reduced graphene oxide using l-methionine as a reducing and stabilizing agent for enhanced catalytic hydrogenation of 4-nitrophenol and antibacterial activity. RSC Adv. 9(67), 39264–39271 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. K.S. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 57(4), 603–619 (1985)

    Article  CAS  Google Scholar 

  48. A. Ahmadi, A. Nezamzadeh-Ejhieh, A comprehensive study on electrocatalytic current of urea oxidation by modified carbon paste electrode with Ni (II)-clinoptilolite nanoparticles: Experimental design by response surface methodology. J. Electroanal. Chem. 801, 328–337 (2017)

    Article  CAS  Google Scholar 

  49. T. Tamiji, A. Nezamzadeh-Ejhieh, A comprehensive study on the kinetic aspects and experimental design for the voltammetric response of a Sn (IV)-clinoptilolite carbon paste electrode towards Hg (II). J. Electroanal. Chem. 829, 95–105 (2018)

    Article  CAS  Google Scholar 

  50. M.I. Veríssimo, D.V. Evtuguin, M.T.S. Gomes, Polyoxometalate functionalized sensors: a review. Front. Chem. 10, (2022)

  51. T. Skeika, M.F.d. Faria, N. Nagata, C.A. Pessoa, Simultaneous voltammetric determination of dypirone and paracetamol with carbon paste electrode and multivariate calibration methodology. J. Braz. Chem. Soc. 19, 762–768 (2008)

  52. R.P. Bacil, L. Chen, S.H. Serrano, R.G. Compton, Dopamine oxidation at gold electrodes: mechanism and kinetics near neutral pH. PCCP 22(2), 607–614 (2020)

    Article  CAS  PubMed  Google Scholar 

  53. S. Eshagh-Nimvari, S.K. Hassaninejad-Darzi, Synergistic effects of nanozeolite beta-MWCNTs on the electrocatalytic oxidation of ethylene glycol: experimental design by response surface methodology. Mater. Sci. Eng. B. 268, 115125 (2021)

    Article  CAS  Google Scholar 

  54. S.K. Hassaninejad-Darzi, Encapsulation of a nickel Salen complex in nanozeolite LTA as a carbon paste electrode modifier for electrocatalytic oxidation of hydrazine. Chin. J. Catal. 39(2), 283–296 (2018)

    Article  CAS  Google Scholar 

  55. J. Ma, J. Wang, G. Zhang, X. Fan, G. Zhang, F. Zhang, Y. Li, Deoxyribonucleic acid-directed growth of well dispersed nickel–palladium–platinum nanoclusters on graphene as an efficient catalyst for ethanol electrooxidation. J. Power Sources 278, 43–49 (2015)

    Article  CAS  Google Scholar 

  56. E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. Interfacial Electrochem. 101(1), 19–28 (1979)

    Article  CAS  Google Scholar 

  57. A. Samadi-Maybodi, S. Ghasemi, H. Ghaffari-Rad, Application of nano-sized nanoporous zinc 2-methylimidazole metal-organic framework for electrocatalytic oxidation of methanol in alkaline solution. J. Power Sources 303, 379–387 (2016)

    Article  CAS  Google Scholar 

  58. S. Hassaninejad-Darzi, M. Rahimnejad, M. Golami-Esfidvajani, Electrocatalytic Oxidation of formaldehyde onto carbon paste electrode modified with nickel decorated nanoporous cobalt-nickel phosphate molecular sieve for fuel cell. Fuel Cells 16(1), 89–99 (2016)

    Article  CAS  Google Scholar 

  59. H. Luo, Z. Shi, N. Li, Z. Gu, Q. Zhuang, Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode. Anal. Chem. 73(5), 915–920 (2001)

    Article  CAS  PubMed  Google Scholar 

  60. P.S. Narayana, N.L. Teradal, J. Seetharamappa, A.K. Satpati, A novel electrochemical sensor for non-ergoline dopamine agonist pramipexole based on electrochemically reduced graphene oxide nanoribbons. Anal. Methods 7(9), 3912–3919 (2015)

    Article  CAS  Google Scholar 

  61. M.S. Tohidi, A. Nezamzadeh-Ejhieh, A simple, cheap and effective methanol electrocatalyst based of Mn (II)-exchanged clinoptilolite nanoparticles. Int. J. Hydrogen Energy 41(21), 8881–8892 (2016)

    Article  CAS  Google Scholar 

  62. A.J. Bard, L.R. Faulkner, Fundamentals and applications: electrochemical methods. Electrochem. Methods 2(482), 580–632 (2001)

    Google Scholar 

  63. M.-T. Hsieh, T.-J. Whang, Mechanistic investigation on the electropolymerization of phenol red by cyclic voltammetry and the catalytic reactions toward acetaminophen and dopamine using poly (phenol red)-modified GCE. J. Electroanal. Chem. 795, 130–140 (2017)

    Article  CAS  Google Scholar 

  64. M.D. Tezerjani, A. Benvidi, A.D. Firouzabadi, M. Mazloum-Ardakani, A. Akbari, Epinephrine electrochemical sensor based on a carbon paste electrode modified with hydroquinone derivative and graphene oxide nano-sheets: simultaneous determination of epinephrine, acetaminophen and dopamine. Measurement 101, 183–189 (2017)

    Article  Google Scholar 

  65. W. Yao, H. Guo, H. Liu, Q. Li, R. Xue, N. Wu, L. Li, M. Wang, W. Yang, Simultaneous electrochemical determination of acetaminophen and dopamine based on metal-organic framework/multiwalled carbon nanotubes-Au@ Ag nanocomposites. J. Electrochem. Soc. 166(14), B1258 (2019)

    Article  Google Scholar 

  66. X. Wang, N. Yang, Q. Wan, X. Wang, Catalytic capability of poly (malachite green) films based electrochemical sensor for oxidation of dopamine. Sens. Actuators, B Chem. 128(1), 83–90 (2007)

    Article  CAS  Google Scholar 

  67. Q. Wang, D. Dong, N. Li, Electrochemical response of dopamine at a penicillamine self-assembled gold electrode. Bioelectrochemistry 54(2), 169–175 (2001)

    Article  CAS  PubMed  Google Scholar 

  68. P.K. Kalambate, B.J. Sanghavi, S.P. Karna, A.K. Srivastava, Simultaneous voltammetric determination of paracetamol and domperidone based on a graphene/platinum nanoparticles/nafion composite modified glassy carbon electrode. Sens. Actuators, B Chem. 213, 285–294 (2015)

    Article  CAS  Google Scholar 

  69. A. Shrivastava, V.B. Gupta, Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci 2(1), 21–25 (2011)

    Article  Google Scholar 

  70. K. Krishnamoorthy, V. Sudha, S.M.S. Kumar, R. Thangamuthu, Simultaneous determination of dopamine and uric acid using copper oxide nano-rice modified electrode. J. Alloy. Compd. 748, 338–347 (2018)

    Article  CAS  Google Scholar 

  71. Z. Yang, X. Zheng, J. Zheng, A facile one-step synthesis of Fe2O3/nitrogen-doped reduced graphene oxide nanocomposite for enhanced electrochemical determination of dopamine. J. Alloy. Compd. 709, 581–587 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the financial support from the Research Council of the Babol Noshirvani University of Technology.

Author information

Authors and Affiliations

Authors

Contributions

H. Shafiei and S. K. Hassaninejad-Darzi conceived the presented idea. They developed the theory and performed the computations and also verified the analytical methods. S. K. Hassaninejad-Darzi investigated and supervised the findings of this work. All experiments were performed by H. Shafiei who was supervised by S. K. Hassaninejad-Darzi. All authors discussed the results and contributed to the final manuscript. S. K. Hassaninejad-Darzi wrote the manuscript with the support of H. Shafiei.

Corresponding author

Correspondence to Seyed Karim Hassaninejad-Darzi.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3678 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafiei, H., Hassaninejad-Darzi, S.K. Simultaneous Electrocatalytic Measurement of Dopamine and Acetaminophen by Nanosensor Based on Ag@Polyoxometalate@Reduced Graphene Oxide and Ionic Liquid. Electrocatalysis 14, 811–828 (2023). https://doi.org/10.1007/s12678-023-00838-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-023-00838-7

Keywords

Navigation