Skip to main content
Log in

Improved Antimicrobial Activity of Bovine Lactoferrin Peptide (LFcinB) Based on Rational Design

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Bovine lactoferrin peptide (LFcinB), as an antimicrobial peptide, is expected to be an alternative of antibiotics owing to its broad-spectrum antimicrobial activity and specific mechanism. However, the weak antimicrobial activity, high hemolysis, and poor stability of LFcinB limited its applications in the field of biomedicine, food and agriculture. In order to improve the antimicrobial activity of LFcinB, five mutants were designed rationally, of which mutant LF4 (M10W/P16R/A24L) showed highest antimicrobial activity. The bioinformatics analysis indicated that the improved antimicrobial activity of LF4 was related to its increased cations, higher amphiphilicity and the extension of the β-sheet in the structure. These studies will highlight the important role of bioinformatic tools in designing ideal biopeptides and lay a foundation for further development of antimicrobial peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Darby EM, Trampari E, Siasat P, Gaya MS, Alav I, Webber MA, Blair JMA (2023) Molecular mechanisms of antibiotic resistance revisited. Nat Rev Microbiol 21:280–295. https://doi.org/10.1038/s41579-022-00820-y

    Article  CAS  PubMed  Google Scholar 

  2. de Kraker MEA, Stewardson AJ, Harbarth S (2016) Will 10 million people die a year due to Antimicrobial Resistance by 2050? PLOS Med 13:e1002184. https://doi.org/10.1371/journal.pmed.1002184

    Article  PubMed  PubMed Central  Google Scholar 

  3. Coque TM, Canton R, Perez-Cobas AE, Fernandez-de-Bobadilla MD, Baquero F (2023) Antimicrobial Resistance in the Global Health Network: known Unknowns and Challenges for efficient responses in the 21st Century. Microorganisms 11:1050. https://doi.org/10.3390/microorganisms11041050

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rima M, Rima M, Fajloun Z, Sabatier JM, Bechinger B, Naas T (2021) Antimicrobial peptides: a Potent Alternative to Antibiotics. Antibiot (Basel) 10:1095. https://doi.org/10.3390/antibiotics10091095

    Article  CAS  Google Scholar 

  5. Huan Y, Kong Q, Mou H, Yi H (2020) Antimicrobial peptides: classification, design, application and research progress in multiple Fields. Front Microbiol 11:582779. https://doi.org/10.3389/fmicb.2020.582779

    Article  PubMed  PubMed Central  Google Scholar 

  6. Marr AK, Gooderham WJ, Hancock RE (2006) Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol 6:468–472. https://doi.org/10.1016/j.coph.2006.04.006

    Article  CAS  PubMed  Google Scholar 

  7. Haug BE, Strom MB, Svendsen JS (2007) The medicinal chemistry of short lactoferricin-based antibacterial peptides. Curr Med Chem 14:1–18. https://doi.org/10.2174/092986707779313435

    Article  CAS  PubMed  Google Scholar 

  8. Jenssen H, Hancock RE (2009) Antimicrobial properties of lactoferrin. Biochimie 91:19–29. https://doi.org/10.1016/j.biochi.2008.05.015

    Article  CAS  PubMed  Google Scholar 

  9. Jenssen H (2005) Anti herpes simplex virus activity of lactoferrin/lactoferricin -- an example of antiviral activity of antimicrobial protein/peptide. Cell Mol Life Sci 62:3002–3013. https://doi.org/10.1007/s00018-005-5228-7

    Article  CAS  PubMed  Google Scholar 

  10. Baker EN, Baker HM (2005) Molecular structure, binding properties and dynamics of lactoferrin. Cell Mol Life Sci 62:2531–2539. https://doi.org/10.1007/s00018-005-5368-9

    Article  CAS  PubMed  Google Scholar 

  11. Lejon T, Stiberg T, Strom MB, Svendsen JS (2004) Prediction of antibiotic activity and synthesis of new pentadecapeptides based on lactoferricins. J Pept Sci 10:329–335. https://doi.org/10.1002/psc.553

    Article  CAS  PubMed  Google Scholar 

  12. Strom MB, Rekdal O, Svendsen JS (2002) Antimicrobial activity of short arginine- and tryptophan-rich peptides. J Pept Sci 8:431–437. https://doi.org/10.1002/psc.398

    Article  CAS  PubMed  Google Scholar 

  13. Strom MB, Haug BE, Rekdal O, Skar ML, Stensen W, Svendsen JS (2002) Important structural features of 15-residue lactoferricin derivatives and methods for improvement of antimicrobial activity. Biochem Cell Biol 80:65–74. https://doi.org/10.1139/o01-236

    Article  CAS  PubMed  Google Scholar 

  14. Strom MB, Rekdal O, Svendsen JS (2002) The effects of charge and lipophilicity on the antibacterial activity of undecapeptides derived from bovine lactoferricin. J Pept Sci 8:36–43. https://doi.org/10.1002/psc.365

    Article  CAS  PubMed  Google Scholar 

  15. Lejon T, Strom MB, Svendsen JS (2001) Antibiotic activity of pentadecapeptides modelled from amino acid descriptors. J Pept Sci 7:74–81. https://doi.org/10.1002/psc.295

    Article  CAS  PubMed  Google Scholar 

  16. Strom MB, Rekdal O, Stensen W, Svendsen JS (2001) Increased antibacterial activity of 15-residue murine lactoferricin derivatives. J Pept Res 57:127–139. https://doi.org/10.1034/j.1399-3011.2001.00806.x

    Article  CAS  PubMed  Google Scholar 

  17. Strom MB, Rekdal O, Svendsen JS (2000) Antibacterial activity of 15-residue lactoferricin derivatives. J Pept Res 56:265–274. https://doi.org/10.1034/j.1399-3011.2000.00770.x

    Article  CAS  PubMed  Google Scholar 

  18. Moore SA, Anderson BF, Groom CR, Haridas M, Baker EN (1997) Three-dimensional structure of diferric bovine lactoferrin at 2.8 angstrom resolution. J Mol Biol 274:222–236. https://doi.org/10.1006/jmbi.1997.1386

    Article  CAS  PubMed  Google Scholar 

  19. Hwang PM, Zhou N, Shan X, Arrowsmith CH, Vogel HJ (1998) Three-dimensional solution structure of lactoferricin B, an antimicrobial peptide derived from bovine lactoferrin. Biochemistry 37:4288–4298. https://doi.org/10.1021/bi972323m

    Article  CAS  PubMed  Google Scholar 

  20. Jiang R, Lonnerdal B (2017) Bovine lactoferrin and lactoferricin exert antitumor activities on human colorectal cancer cells (HT-29) by activating various signaling pathways. Biochem Cell Biol 95:99–109. https://doi.org/10.1139/bcb-2016-0094

    Article  CAS  PubMed  Google Scholar 

  21. Haiwen Z, Rui H, Bingxi Z, Qingfeng G, Jifeng Z, Xuemei W, Beibei W (2019) Oral administration of bovine lactoferrin-derived lactoferricin (lfcin) B could attenuate Enterohemorrhagic Escherichia coli O157:H7 Induced Intestinal Disease through improving intestinal barrier function and microbiota. J Agric Food Chem 67:3932–3945. https://doi.org/10.1021/acs.jafc.9b00861

    Article  CAS  PubMed  Google Scholar 

  22. Bommarius B, Jenssen H, Elliott M, Kindrachuk J, Pasupuleti M, Gieren H, Jaeger KE, Hancock RE, Kalman D (2010) Cost-effective expression and purification of antimicrobial and host defense peptides in Escherichia coli. Peptides 31:1957–1965. https://doi.org/10.1016/j.peptides.2010.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Su B, Xu L, Xu X, Wang L, Li A, Lin J, Ye L (2020) Redesign of a short-chain dehydrogenase/reductase for asymmetric synthesis of ethyl (R)-2-hydroxy-4-phenylbutanoate based on per-residue free energy decomposition and sequence conservatism analysis. Green Synth Catal 1:150–159. https://doi.org/10.1016/j.gresc.2020.09.003

    Article  Google Scholar 

  24. Geitani R, Ayoub Moubareck C, Touqui L, Karam Sarkis D (2019) Cationic antimicrobial peptides: alternatives and/or adjuvants to antibiotics active against methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas aeruginosa. BMC Microbiol 19:54. https://doi.org/10.1186/s12866-019-1416-8

    Article  PubMed  PubMed Central  Google Scholar 

  25. Stillger L, Viau L, Kamm L, Holtmann D, Muller D (2023) Optimization of antimicrobial peptides for the application against biocorrosive bacteria. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-023-12562-9

    Article  PubMed  PubMed Central  Google Scholar 

  26. Vishweshwaraiah YL, Acharya A, Hegde V, Prakash B (2021) Rational design of hyperstable antibacterial peptides for food preservation. NPJ Sci Food 5:26. https://doi.org/10.1038/s41538-021-00109-z

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hajji M, Jellouli K, Hmidet N, Balti R, Sellami-Kamoun A, Nasri M (2010) A highly thermostable antimicrobial peptide from aspergillus clavatus ES1: biochemical and molecular characterization. J Ind Microbiol Biotechnol 37:805–813. https://doi.org/10.1007/s10295-010-0725-6

    Article  CAS  PubMed  Google Scholar 

  28. Hitchner MA, Santiago-Ortiz LE, Necelis MR, Shirley DJ, Palmer TJ, Tarnawsky KE, Vaden TD, Caputo GA (2019) Activity and characterization of a pH-sensitive antimicrobial peptide. Biochim Biophys Acta Biomembr 1861:182984. https://doi.org/10.1016/j.bbamem.2019.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Heymich ML, Srirangan S, Pischetsrieder M (2021) Stability and Activity of the Antimicrobial peptide Leg1 in solution and on meat and its optimized generation from Chickpea Storage protein. Foods 10:1192. https://doi.org/10.3390/foods10061192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maisetta G, Di Luca M, Esin S, Florio W, Brancatisano FL, Bottai D, Campa M, Batoni G (2008) Evaluation of the inhibitory effects of human serum components on bactericidal activity of human beta defensin 3. Peptides 29:1–6. https://doi.org/10.1016/j.peptides.2007.10.013

    Article  CAS  PubMed  Google Scholar 

  31. Chu HL, Chih YH, Peng KL, Wu CL, Yu HY, Cheng D, Chou YT, Cheng JW (2020) Antimicrobial peptides with enhanced Salt Resistance and Antiendotoxin Properties. Int J Mol Sci 21:6810. https://doi.org/10.3390/ijms21186810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shao C, Zhu Y, Lai Z, Tan P, Shan A (2019) Antimicrobial peptides with protease stability: progress and perspective. Future Med Chem 11:2047–2050. https://doi.org/10.4155/fmc-2019-0167

    Article  CAS  PubMed  Google Scholar 

  33. Starr CG, Wimley WC (2017) Antimicrobial peptides are degraded by the cytosolic proteases of human erythrocytes. Biochim Biophys Acta Biomembr 1859:2319–2326. https://doi.org/10.1016/j.bbamem.2017.09.008

    Article  CAS  PubMed  Google Scholar 

  34. He Y, Jin Y, Ying X, Wu Q, Yao S, Li Y, Liu H, Ma G, Wang X (2020) Development of an antimicrobial peptide-loaded mineralized collagen bone scaffold for infective bone defect repair. Regen Biomater 7:515–525. https://doi.org/10.1093/rb/rbaa015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li Z, Cheng Q, Guo H, Zhang R, Si D (2020) Expression of hybrid peptide EF-1 in Pichia pastoris, its purification, and Antimicrobial characterization. Molecules 25:5538. https://doi.org/10.3390/molecules25235538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Waghu FH, Barai RS, Gurung P, Idicula-Thomas S (2016) CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res 44:D1094–D1097. https://doi.org/10.1093/nar/gkv1051

    Article  CAS  PubMed  Google Scholar 

  37. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132. https://doi.org/10.1016/0022-2836(82)90515-0

    Article  CAS  PubMed  Google Scholar 

  38. Guruprasad K, Reddy BV, Pandit MW (1990) Correlation between Stability of a protein and its Dipeptide composition - a Novel-Approach for Predicting Invivo Stability of a protein from its primary sequence. Protein Eng 4:155–161. https://doi.org/10.1093/protein/4.2.155

    Article  CAS  PubMed  Google Scholar 

  39. Ikai A (1980) Extraction of the apo B cluster from human low density lipoprotein with tween 80. J Biochem 88:1349–1357. https://doi.org/10.1093/oxfordjournals.jbchem.a133103

    Article  CAS  PubMed  Google Scholar 

  40. Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF (1999) Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 112:531–552. https://doi.org/10.1385/1-59259-584-7:531

    Article  CAS  PubMed  Google Scholar 

  41. Kuntal BK, Aparoy P, Reddanna P (2010) EasyModeller: a graphical interface to MODELLER. BMC Res Notes 3:226. https://doi.org/10.1186/1756-0500-3-226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kaur J, Kumar A, Kaur J (2018) Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements. Int J Biol Macromol 106:803–822. https://doi.org/10.1016/j.ijbiomac.2017.08.080

    Article  CAS  PubMed  Google Scholar 

  43. Schagger H (2006) Tricine-SDS-PAGE. Nat Protoc 1:16–22. https://doi.org/10.1038/nprot.2006.4

    Article  CAS  PubMed  Google Scholar 

  44. Yu HY, Tu CH, Yip BS, Chen HL, Cheng HT, Huang KC, Lo HJ, Cheng JW (2011) Easy strategy to increase salt resistance of antimicrobial peptides. Antimicrob Agents Chemother 55:4918–4921. https://doi.org/10.1128/AAC.00202-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fernandes JM, Saint N, Kemp GD, Smith VJ (2003) Oncorhyncin III: a potent antimicrobial peptide derived from the non-histone chromosomal protein H6 of rainbow trout, Oncorhynchus mykiss. Biochem J 373:621–628. https://doi.org/10.1042/BJ20030259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Young CL, Britton ZT, Robinson AS (2012) Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications. Biotechnol J 7:620–634. https://doi.org/10.1002/biot.201100155

    Article  CAS  PubMed  Google Scholar 

  47. Costa S, Almeida A, Castro A, Domingues L (2014) Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system. Front Microbiol 5:63. https://doi.org/10.3389/fmicb.2014.00063

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jiang Z, Vasil AI, Hale JD, Hancock RE, Vasil ML, Hodges RS (2008) Effects of net charge and the number of positively charged residues on the biological activity of amphipathic alpha-helical cationic antimicrobial peptides. Biopolymers 90:369–383. https://doi.org/10.1002/bip.20911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rosenfeld Y, Lev N, Shai Y (2010) Effect of the hydrophobicity to net positive charge ratio on antibacterial and anti-endotoxin activities of structurally similar antimicrobial peptides. Biochemistry 49:853–861. https://doi.org/10.1021/bi900724x

    Article  CAS  PubMed  Google Scholar 

  50. Wang X, Mishra B, Lushnikova T, Narayana JL, Wang G (2018) Amino acid composition determines peptide activity spectrum and hot-spot-based design of Merecidin. Adv Biosyst 2:1700259. https://doi.org/10.1002/adbi.201700259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liang Y, Zhang X, Yuan Y, Bao Y, Xiong M (2020) Role and modulation of the secondary structure of antimicrobial peptides to improve selectivity. Biomater Sci 8:6858–6866. https://doi.org/10.1039/d0bm00801j

    Article  CAS  PubMed  Google Scholar 

  52. Han FF, Gao YH, Luan C, Xie YG, Liu YF, Wang YZ (2013) Comparing bacterial membrane interactions and antimicrobial activity of porcine lactoferricin-derived peptides. J Dairy Sci 96:3471–3487. https://doi.org/10.3168/jds.2012-6104

    Article  CAS  PubMed  Google Scholar 

  53. Kang JH, Lee MK, Kim KL, Hahm KS (1996) Structure-biological activity relationships of 11-residue highly basic peptide segment of bovine lactoferrin. Int J Pept Protein Res 48:357–363. https://doi.org/10.1111/j.1399-3011.1996.tb00852.x

    Article  CAS  PubMed  Google Scholar 

  54. Dong W, Zhu X, Zhou X, Yang Y, Yan X, Sun L, Shang D (2018) Potential role of a series of lysine-/leucine-rich antimicrobial peptide in inhibiting lipopolysaccharide-induced inflammation. Biochem J 475:3687–3706. https://doi.org/10.1042/BCJ20180483

    Article  CAS  PubMed  Google Scholar 

  55. Sousa JC, Berto RF, Gois EA, Fontenele-Cardi NC, Honorio JE Jr, Konno K, Richardson M, Rocha MF, Camargo AA, Pimenta DC, Cardi BA, Carvalho KM (2009) Leptoglycin: a new Glycine/Leucine-rich antimicrobial peptide isolated from the skin secretion of the south american frog Leptodactylus pentadactylus (Leptodactylidae). Toxicon 54:23–32. https://doi.org/10.1016/j.toxicon.2009.03.011

    Article  CAS  PubMed  Google Scholar 

  56. Assoni L, Milani B, Carvalho MR, Nepomuceno LN, Waz NT, Guerra MES, Converso TR, Darrieux M (2020) Resistance mechanisms to antimicrobial peptides in Gram-Positive Bacteria. Front Microbiol 11:593215. https://doi.org/10.3389/fmicb.2020.593215

    Article  PubMed  PubMed Central  Google Scholar 

  57. Phambu N, Almarwani B, Garcia AM, Hamza NS, Muhsen A, Baidoo JE, Sunda-Meya A (2017) Chain length effect on the structure and stability of antimicrobial peptides of the (RW)(n) series. Biophys Chem 227:8–13. https://doi.org/10.1016/j.bpc.2017.05.009

    Article  CAS  PubMed  Google Scholar 

  58. Tacias-Pascacio VG, Castaneda-Valbuena D, Morellon-Sterling R, Tavano O, Berenguer-Murcia A, Vela-Gutierrez G, Rather IA, Fernandez-Lafuente R (2021) Bioactive peptides from fisheries residues: a review of use of papain in proteolysis reactions. Int J Biol Macromol 184:415–428. https://doi.org/10.1016/j.ijbiomac.2021.06.076

    Article  CAS  PubMed  Google Scholar 

  59. Zhao J, Zhao C, Liang G, Zhang M, Zheng J (2013) Engineering antimicrobial peptides with improved antimicrobial and hemolytic activities. J Chem Inf Model 53:3280–3296. https://doi.org/10.1021/ci400477e

    Article  CAS  PubMed  Google Scholar 

  60. Zhou J, Chen L, Liu Y, Shen T, Zhang C, Liu Z, Feng X, Wang C (2019) Antimicrobial peptide PMAP-37 analogs: increasing the positive charge to enhance the antibacterial activity of PMAP-37. J Pept Sci 25:e3220. https://doi.org/10.1002/psc.3220

    Article  CAS  PubMed  Google Scholar 

  61. Sato H, Feix JB (2006) Peptide-membrane interactions and mechanisms of membrane destruction by amphipathic alpha-helical antimicrobial peptides. Biochim Biophys Acta 1758:1245–1256. https://doi.org/10.1016/j.bbamem.2006.02.021

    Article  CAS  PubMed  Google Scholar 

  62. Jenssen H, Andersen JH, Uhlin-Hansen L, Gutteberg TJ, Rekdal O (2004) Anti-HSV activity of lactoferricin analogues is only partly related to their affinity for heparan sulfate. Antiviral Res 61:101–109. https://doi.org/10.1016/j.antiviral.2003.09.001

    Article  CAS  PubMed  Google Scholar 

  63. Lei J, Sun L, Huang S, Zhu C, Li P, He J, Mackey V, Coy DH, He Q (2019) The antimicrobial peptides and their potential clinical applications. Am J Transl Res 11:3919–3931

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank to the financial support of the National Natural Science Foundation of China (No. 22208058) to B. S.

Author information

Authors and Affiliations

Authors

Contributions

J. L. conceived the study; X. L. collected the data; X. L. and X. H. analyzed the data; X. H. and B. S. drafted the manuscript; All authors edited and approved the final version of the manuscript.

Corresponding authors

Correspondence to Bingmei Su or Juan Lin.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, X., Liu, X., Su, B. et al. Improved Antimicrobial Activity of Bovine Lactoferrin Peptide (LFcinB) Based on Rational Design. Protein J 42, 633–644 (2023). https://doi.org/10.1007/s10930-023-10142-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-023-10142-4

Keywords

Navigation