Skip to main content
Log in

Effects of CaTiO3, BaTiO3, and BaZrO3 on the crystal structures and electrical properties of Bi1/2Na1/2TiO3–SrTiO3 piezoelectric ceramics

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

This study investigated the effects of CaTiO3, BaTiO3, and BaZrO3 doping on the phase transition and strain properties of lead-free 0.76Bi1/2Na1/2TiO3-0.24SrTiO3 (BNT-24ST) piezoceramics. The nonergodicity of the BNT-24ST ceramic was stabilized as a function of CaTiO3 doping, corresponding to the existence of the ferroelectric-to-relaxor phase transition temperature (TF-R) peak in the dielectric permittivity curves of the samples. However, the BaTiO3- or BaZrO3- doped NBT-24ST samples promote the transition from a nonergodic to an ergodic relaxor phase. The 0.01 mol BaTiO3 or 0.01 mol BaZrO3 doping decreases the TF-R peak of the NBT-24ST sample to below room temperature. Interestingly, it is noted that the nonergodic-to-ergodic relaxor phase transition of the BaTiO3-doped BNT-24ST ceramics was faster than that of the BaZrO3-doped BNT-24ST ceramics. The 0.01 mol BaTiO3-doped BNT-24ST sample presents a maximum dielectric constant of ~ 8000. The maximum piezoelectric actuator coefficient (uni-Smax/Emax) of ~ 525 pm/V was observed for the 0.01 mol BaTiO3-doped BNT-24ST ceramic. The effect of the tolerance factor on the phase transition and electrical properties of the BNT-24ST-ABO3 ceramics is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. G.H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999)

    Article  CAS  Google Scholar 

  2. K. Uchino, Ferroelectric Devices (CRC Press, 2000)

  3. M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectric and Related Materials (Oxford University Press, 2001)

  4. M. Safaei, H.A. Sadano, S.R. Anton, Smart Mater. Struct. 28, 113001 (2019)

    Article  CAS  Google Scholar 

  5. X. Gao, J. Yang, J. Wu, X. Xin, Z. Li, X. Yuan, X. Shen, S. Dong, Adv. Mater. Technol. 5, 1900716 (2020)

    Article  CAS  Google Scholar 

  6. E.U. Directive, Restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS). Official J. Eur. Union 46, 19 (2013)

    Google Scholar 

  7. J. Rödel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic, J. Eur. Ceram. Soc. 35, 1659 (2015)

    Article  Google Scholar 

  8. C.H. Hong, H.P. Kim, B.Y. Choi, H.S. Han, J.S. Lee, C.W. Ahn, W. Jo, J. Materiomics. 2, 1 (2016)

    Article  Google Scholar 

  9. J. Koruza, A.J. Bell, T. Frömling, K.G. Webber, K. Wang, J. Rödel, J. Materiomics. 4, 13 (2018)

    Article  Google Scholar 

  10. J. Hao, W. Li, J. Zhai, H. Chen, Mater. Sci. Eng. R. 135, 1 (2019)

    Article  Google Scholar 

  11. W. Jo, T. Granzow, E. Aulbach, J. Rödel, D. Damjanovic, J. Appl. Phys. 105, 094102 (2009)

    Article  Google Scholar 

  12. M. Acosta, L.A. Schmitt, L. Moina-Luna, M.C. Scherrer, M. Brilz, K.G. Webber, M. Deluca, H.J. Kleebe, J. Rödel, J. Am. Ceram. Soc. 98, 3405 (2015)

    Article  CAS  Google Scholar 

  13. T.H. Dinh, J.K. Kang, J.S. Lee, N.H. Khansur, J. Daniels, H.Y. Lee, F.Z. Yao, K. Wang, J.F. Li, H.S. Han, W. Jo, J. Eur. Ceram. Soc. 36, 3401 (2016)

    Article  CAS  Google Scholar 

  14. T.A. Duong, H.S. Han, Y.H. Hong, Y.S. Park, H.T.K. Nguyen, T.H. Dinh, J.S. Lee, J. Electrochem. 41, 73 (2018)

    CAS  Google Scholar 

  15. K. Wang, A. Hussain, W. Jo, J. Rödel, J. Am. Ceram. Soc. 95, 2241 (2012)

    Article  CAS  Google Scholar 

  16. S. Praharaj, D. Rout, S.J.L. Kang, I.W. Kim, Mater. Lett. 184, 197 (2016)

    Article  CAS  Google Scholar 

  17. Y. Zhu, Y. Zhang, B. Xie, P. Fan, M.A. Marwat, W. Ma, C. Wang, B. Yang, J. Xiao, H. Zhang, Ceram. Int. 44, 7851 (2018)

    Article  CAS  Google Scholar 

  18. G. Wang, Y.H. Hong, H.T.K. Nguyen, B.W. Kim, C.W. Ahn, H.S. Han, J.S. Lee, Sens. Actuators A 293, 1 (2019)

    Article  CAS  Google Scholar 

  19. T.H. Dinh, H.S. Han, J.S. Lee, Mater. Lett. 258, 126793 (2020)

    Article  CAS  Google Scholar 

  20. H.T.K. Nguyen, T.A. Duong, S.S. Lee, C.W. Ahn, H.S. Han, J.S. Lee, J. Mater. Res. 36, 1048 (2021)

    Article  CAS  Google Scholar 

  21. T.H. Dinh, J.S. Lee, Mater. Lett. 313, 131772 (2022)

    Article  Google Scholar 

  22. H.S. Han, C.W. Ahn, I.W. Kim, A. Hussain, J.S. Lee, Mater. Lett. 70, 98 (2012)

    Article  CAS  Google Scholar 

  23. T.H. Dinh, H.Y. Lee, C.H. Yoon, R.A. Malik, Y.M. Kong, J.S. Lee, V.D.N. Tran, J. Korean Phys. Soc. 62, 1004 (2013)

    Article  CAS  Google Scholar 

  24. I.K. Hong, H.S. Han, C.H. Yoon, H.N. Ji, W.P. Tai, J.S. Lee, J. Intell. Mater. Syst. Struct. 24, 1343 (2012)

    Article  Google Scholar 

  25. R.D. Shannon, Acta Crystallogr. Sect. A: Found. Crystallogr. 32, 751 (1976)

    Article  Google Scholar 

  26. C. Ciomaga, M. Viviani, M.T. Buscaglia, V. Buscaglia, L. Mitoseriu, A. Stancu, P. Nanni, J. Eur. Ceram. Soc. 27, 4061 (2007)

    Article  CAS  Google Scholar 

  27. S. Zixiong, P. Yongping, L. Yuwen, J. Electron. Mater. 43, 1466 (2014)

    Article  Google Scholar 

  28. T. Badapanda, S.K. Rout, L.S. Cavalcante, J.C. Sczancoski, S. Panigrahi, T.P. Sinha, E. Longo, J. Mater. Chem. Phys. 121, 147 (2010)

    Article  CAS  Google Scholar 

  29. F. Guo, W. Cai, R. Gao, C. Fu, G. Chen, X. Deng, Z. Wang, Q. Zhang, J. Electron. Mater. 48, 3239 (2019)

    Article  CAS  Google Scholar 

  30. V.D.N. Tran, A. Hussain, H.S. Han, T.H. Dinh, C.W. Ahn, I.W. Kim, J.S. Lee, Jpn. J. Appl. Phys. 51, 09MD02 (2012)

    Article  Google Scholar 

  31. W. Jo, S. Schaab, E. Sapper, L.A. Schmitt, H.J. Kleebe, A.J. Bell, J. Rödel, J. Appl. Phys. 110, 074106 (2011)

    Article  Google Scholar 

  32. V.D.N. Tran, T.H. Dinh, H.S. Han, W. Jo, J.S. Lee, Ceram. Int. 39, S119 (2013)

    Article  CAS  Google Scholar 

  33. T.H. Dinh, H.S. Han, V.D.N. Tran, V.L. Van, J.S. Lee, J. Electro. Mater. (2023). https://doi.org/10.1007/s11664-023-10263-7

    Article  Google Scholar 

  34. V.M. Goldschmidt, Naturwissenschaften 14, 477 (1926)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.02-2020.28.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thi Hinh Dinh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhlishah, A.D., Dinh, T.H., Han, HS. et al. Effects of CaTiO3, BaTiO3, and BaZrO3 on the crystal structures and electrical properties of Bi1/2Na1/2TiO3–SrTiO3 piezoelectric ceramics. J Electroceram 51, 192–198 (2023). https://doi.org/10.1007/s10832-023-00326-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-023-00326-w

Keywords

Navigation