Skip to main content
Log in

Design and Experimental Validation of a High-Resolution Nanoparticle Differential Mobility Analyzer

  • PHYSICAL INSTRUMENTS FOR ECOLOGY, MEDICINE, AND BIOLOGY
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

Sub-23 nm particles in motor vehicle exhaust have a significant impact on the environment and human health, but current analytical methods have low particle size resolution that make it difficult to truly reflect the sub-23 nm particles emission characteristics in exhaust gas. A differential mobility analyzer (DMA) combining a semi-ellipsoidal gas flow conditioner, a multi-hole ring, and an anti-turbulent slit was designed to improve the particle size resolution of the DMA for sub-23 nm particles at a conventional sheath gas flow rate. The effect of the anti-turbulent slit on the DMA particle size resolution was modeled by COMSOL software. Through coupling analysis of the electric field, flow field, and particle trajectory, the DMA particle size resolution improved with the increase in depth and decrease in width of the anti-turbulent slit, and the critical size of the anti-turbulent slit of the self-developed DMA was determined. The experimental results showed that the particle size resolution of the developed high-resolution DMA for 12–23 nm particles was 7–12.5 under the condition that the transfer function height is at the same level, a value that was 2.1 times that of similar commercial equipment (TSI 3081). The analyzer can provide a more effective means for the study of sub-23 nm particles emission patterns in gases such as motor vehicle exhaust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Wang, K., China’s motor vehicle fleet exceeds 400 million units, The People’s Public Security Newspaper, July 7, 2022.

  2. Zimmerman, N., Wang, J.M., Jeong, C.H., Ramos, M., Hilker, N., Healy, R.M., Sabaliauskas, K., Wallace, J.S., and Evans, G.J., Environ. Sci. Technol., 2016, vol. 50, no. 4, p. 2035. https://doi.org/10.1021/acs.est.5b04444

    Article  ADS  Google Scholar 

  3. Giechaskiel, B., Vanhanen, J., Väkevä, M., and Martini, G., Aerosol Sci. Technol., 2017, vol. 51, no. 5, p. 626. https://doi.org/10.1080/02786826.2017.1286291

    Article  ADS  Google Scholar 

  4. Toumasatos, Z., Kontses, A., Doulgeris, S., Samaras, Z., and Ntziachristos, L., Aerosol Sci. Technol., 2021, vol. 55, no. 2, p. 182. https://doi.org/10.1080/02786826.2020.1830942

    Article  ADS  Google Scholar 

  5. Hu, Z., Lu, Z., Song, B., and Quan, Y., Sci. Total Environ., 2021, vol. 762, p. 143128. https://doi.org/10.1016/j.scitotenv.2020.143128

  6. Center, J.R., PMP Revisions to ECE/TRANS/WP.29/GRPE/2020/14: sub 23 nm PNMeasurements GRPE-81-10, 2020. http://www.unece.org/trans/main/wp29/wp29wgs/wp29grpe/grpeinf81.html.

  7. Knutson, E.O. and Whitby K.T., J. Aerosol Sci., 1975, vol. 6, no. 6, p. 453. https://doi.org/10.1016/0021-8502(75)90061-0

    Article  ADS  Google Scholar 

  8. Liu, B.Y. and Pui, D.Y., J. Colloid Interface Sci., 1974, vol. 47, 1, p. 155. https://doi.org/10.1016/0021-9797(74)90090-3

    Article  ADS  Google Scholar 

  9. Kirchner, U., Vogt, R., and Maricq, M., SAE Technical Paper, 2010. https://doi.org/10.4271/2010-01-0789

  10. de la Mora, J.F. and Kozlowski, J., J. Aerosol Sci., 2013, vol. 57, p. 45. https://doi.org/10.1016/j.jaerosci.2012.10.009

    Article  ADS  Google Scholar 

  11. Rosser, S. and de la Mora, J.F., Aerosol Sci. Technol., 2005, vol. 39, no. 12, p. 1191. https://doi.org/10.1080/02786820500444820

    Article  ADS  Google Scholar 

  12. Brunelli, N.A., Flagan, R.C. and Giapis, K.P., Aerosol Sci. Technol., 2009, vol. 43, no. 1, p. 53. https://doi.org/10.1080/02786820802464302

    Article  ADS  Google Scholar 

  13. Chen, D.R., Pui, D.Y., Hummes, D., Fissan, H., Quant, F.R. and Sem, G.J., J. Aerosol Sci., 1998, vol. 29, nos. 5–6, p. 497. https://doi.org/10.1016/S0021-8502(97)10018-0

    Article  ADS  Google Scholar 

  14. Liedtke, K., Diploma Thesis, Univ. of Duisburg, 1999.

  15. Eichler, T., De Juan, L., and de la Mora, J.F., Aerosol Sci. Technol., 1998, vol. 29, no. 1, p. 39. https://doi.org/10.1080/02786829808965549

    Article  ADS  Google Scholar 

  16. de la Mora, J.F., J. Aerosol Sci., 2017, vol. 113, p. 265. https://doi.org/10.1016/j.jaerosci.2017.07.020

    Article  ADS  Google Scholar 

  17. Rosenberger, T., Kiesler, D., Hontañón, E., Fuentes, D., Ramiro, E., and Kruis, F.E., Aerosol Sci. Technol., 2019, vol. 53, no. 10, p. 1172. https://doi.org/10.1080/02786826.2019.1642443

    Article  ADS  Google Scholar 

  18. Winklmayr, W.G.P.A.O.A., Reischl, G.P., Lindner, A.O., and Berner, A., J. Aerosol Sci., 1991, vol. 22, no. 3, p. 289. https://doi.org/10.1016/S0021-8502(05)80007-2

    Article  ADS  Google Scholar 

  19. Biskos, G., Reavell, K., and Collings, N., J. Electrost., 2005, vol. 63, no. 1, p. 69. https://doi.org/10.1016/j.elstat.2004.07.001

    Article  Google Scholar 

  20. Le The, H., Le-Thanh, H., Tran-Minh, N., and Karlsen, F., Proc. 2nd Middle East Conference on Biomedical Engineering, Doha, 2014, p. 25 https://doi.org/10.1109/MECBME.2014.6783199

  21. Chen, M., Wang, H., Sun, Q., Yu, F., Wang, Y., Wan, W., Wang, C., Gui, H., Liu, J., and Lü, L., Atmosphere, 2019, vol. 10, no. 3, p. 116. https://doi.org/10.3390/atmos10030116

    Article  ADS  Google Scholar 

  22. Knutson, E. and Whitby K., J. Aerosol Sci., 1975, vol. 6, no. 6, p. 443. https://doi.org/10.1016/0021-8502(75)90060-9

    Article  ADS  Google Scholar 

  23. Stolzenburg, M.R., PhD Thesis, Univ. of Minnesota, 1988.

  24. Hummes, D., Neumann, S., Fissan, H., and Stratmann, F., Part. Part. Syst. Charact., 1996, vol. 13, no. 5, p. 327. https://doi.org/10.1002/ppsc.19960130513

    Article  Google Scholar 

  25. Fissan, H.D.F.P.S.D.D., Hummes, D., Stratmann, F., Büscher, P., Neumann, S., Pui, D.Y.H., and Chen, D., Aerosol Sci. Technol., 1996, vol. 24, no. 1, p. 1. https://doi.org/10.1080/02786829608965347

    Article  ADS  Google Scholar 

  26. Stratmann, F.T.D.H. and Kauffeldt, T., Aerosol Sci. Technol., 1997, vol. 26, no. 4, p. 368. https://doi.org/10.1080/02786829708965437

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was supported by the National Natural Science Foundation of China (nos. 42005108, U2133212), the Science and Technological Fund of Anhui Province (no. 2008085MD116), and Major Subject of Science and Technology of Anhui Province (no. 202003a07020005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tongzhu Yu or Yixin Yang.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Yu, T., Yang, Y. et al. Design and Experimental Validation of a High-Resolution Nanoparticle Differential Mobility Analyzer. Instrum Exp Tech 66, 649–660 (2023). https://doi.org/10.1134/S0020441223040085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441223040085

Navigation