Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-05T22:15:17.627Z Has data issue: false hasContentIssue false

TESTING DEFINITIONAL EQUIVALENCE OF THEORIES VIA AUTOMORPHISM GROUPS

Published online by Cambridge University Press:  17 July 2023

HAJNAL ANDRÉKA*
Affiliation:
ALFRÉD RÉNYI INSTITUTE OF MATHEMATICS REÁLTANODA STREET 13–15 H-1053 BUDAPEST, HUNGARY E-mail: madarasz.judit@renyi.hu E-mail: nemeti.istvan@renyi.hu
JUDIT MADARÁSZ
Affiliation:
ALFRÉD RÉNYI INSTITUTE OF MATHEMATICS REÁLTANODA STREET 13–15 H-1053 BUDAPEST, HUNGARY E-mail: madarasz.judit@renyi.hu E-mail: nemeti.istvan@renyi.hu
ISTVÁN NÉMETI
Affiliation:
ALFRÉD RÉNYI INSTITUTE OF MATHEMATICS REÁLTANODA STREET 13–15 H-1053 BUDAPEST, HUNGARY E-mail: madarasz.judit@renyi.hu E-mail: nemeti.istvan@renyi.hu
GERGELY SZÉKELY
Affiliation:
UNIVERSITY OF PUBLIC SERVICE 2 LUDOVIKA SQUARE H-1053 BUDAPEST, HUNGARY E-mail: szekely.gergely@renyi.hu

Abstract

Two first-order logic theories are definitionally equivalent if and only if there is a bijection between their model classes that preserves isomorphisms and ultraproducts (Theorem 2). This is a variant of a prior theorem of van Benthem and Pearce. In Example 2, uncountably many pairs of definitionally inequivalent theories are given such that their model categories are concretely isomorphic via bijections that preserve ultraproducts in the model categories up to isomorphism. Based on these results, we settle several conjectures of Barrett, Glymour and Halvorson.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Adámek, J., Herrlich, H., & Strecker, G. E. (2004). Abstract and Concrete Categories (online edition). The Joy of Cats. http://katmat.math.uni-bremen.de/acc/acc.pdfGoogle Scholar
Andréka, H., Madarász, J. X., & Németi, I. (2002). On the Logical Structure of Relativity Theories. Research report. Budapest: Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, 1312 pp., with contributions from A. Andai, G. Sági, I. Sain and Cs. Tőke. Available from: http://www.math-inst.hu/pub/algebraiclogic/Contents.html.Google Scholar
Andréka, H., Madarász, J. X., & Németi, I. (2005). Mutual definability does not imply definitional equivalence, a simple example. Mathematical Logic Quarterly, 51(6), 591597.CrossRefGoogle Scholar
Andréka, H., & Németi, I. (2014). Comparing theories: The dynamics of changing vocabulary. In Baltag, A. and Smets, S., editors. Johan Van Benthem on Logic and Information Dynamics. Springer Series Outstanding Contributions to Logic, Vol. 5. Dordrecht: Springer, pp. 143172.CrossRefGoogle Scholar
Awodey, S., & Forssell, H. (2013). First-order logical duality. Annals of Pure and Applied Logic, 164(3), 319348.CrossRefGoogle Scholar
Barrett, T. W. (2017). On the Structure and Equivalence of Theories. Ph.D. Thesis, Princeton University.Google Scholar
Barrett, T. W. (2018). What do symmetries tell us about structure? Philosophy of Science, 85(4), 617639.CrossRefGoogle Scholar
Barrett, T. W., & Halvorson, H. (2016). Morita equivalence. The Review of Symbolic Logic, 9(3), 556582.CrossRefGoogle Scholar
Barrett, T. W., & Halvorson, H. (2022). Mutual translatability, equivalence, and the structure of theories. Synthese, 200(3), 136.CrossRefGoogle Scholar
Barrett, T. W., Manchak, J. B., & Weatherall, J. (2023). On automorphism criteria for comparing amounts of mathematical structure. Synthese, 201, Article no. 19.CrossRefGoogle Scholar
Chang, C. C., & Keisler, H. J. (1990). Model Theory (third edition). Studies in Logic and the Foundations of Mathematics, Vol. 73. Amsterdam: North-Holland.Google Scholar
de Bouvère, K. (1965). Synonymous theories. In Addison, J. W., Henkin, L., and Tarski, A., editors. The Theory of Models. Amsterdam: North-Holland, pp. 402406.Google Scholar
Glymour, C. (2013). Theoretical equivalence and the semantic view of theories. Philosophy of Science, 80(2), 286297.CrossRefGoogle Scholar
Halvorson, H. (2012). What scientific theories could not be. Philosophy of Science, 79(2), 183206.CrossRefGoogle Scholar
Halvorson, H. (2019). The Logic in Philosophy of Science. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Harnik, V. (2011). Model theory vs. categorical logic: Two approaches to pretopos completion (a.k.a. ${T}^{\mathrm{eq}}$ ). In Models, Logics, and Higher-Dimensional Categories. CRM Proceedings and Lecture Notes, Vol. 53. Providence: American Mathematical Society, pp. 79106.CrossRefGoogle Scholar
Henkin, L., Monk, J. D., & Tarski, A. (1971 and 1985). Cylindric Algebras. Parts I–II. Amsterdam: North-Holland.Google Scholar
Hodges, W. (2008). Model Theory. Cambridge: Cambridge University Press.Google Scholar
Hudetz, L. (2019). Definable categorical equivalence. Philosophy of Science, 86, 4775.CrossRefGoogle Scholar
Hudetz, L. (2019). The semantic view of theories and higher-order languages. Synthese, 196, 11311149.CrossRefGoogle Scholar
Kochen, S. (1961). Ultraproducts in the theory of models. Annals of Mathematics, 74(2), 221261.CrossRefGoogle Scholar
Lefever, K., & Székely, G. (2019). On generalization of definitional equivalence to non-disjoint languages. Journal of Philosophical Logic, 48(4), 709729.CrossRefGoogle Scholar
Lutz, S. (2017). What was the syntax–semantics debate in the philosophy of science about? Philosophy and Phenomenological Research, 95(2), 319352.CrossRefGoogle Scholar
Madarász, J. X. (2002). Logic and Relativity (in the Light of Definability Theory). Ph.D. Thesis, Eötvös Loránd University. Available from: http://www.math-inst.hu/pub/algebraic-logic/diszi.pdf.Google Scholar
Makkai, M. (1985). Ultraproducts and categorical logic. In Prisco, C. A., editor. Methods in Mathematical Logic. Lecture Notes in Mathematics, Vol. 1130. Berlin–Heidelberg: Springer, pp. 222309.CrossRefGoogle Scholar
Makkai, M. (1987). Stone duality for first order logic. Advances in Mathematics, 65, 97170.CrossRefGoogle Scholar
van Benthem, J., & Pearce, D. (1984). A mathematical characterization of interpretation between theories. Studia Logica, 43(3), 295303.CrossRefGoogle Scholar
Visser, A. (2006). Categories of theories and interpretations. In Enayat, A., Kalantari, I., and Moniri, M., editors. Logic in Tehran. Proceedings of the Workshop and Conference on Logic, Algebra and Arithmetic, Held October 18–22, 2003. Lecture Notes in Logic, Vol. 26. Wellesley: ASL and A. K. Peters, pp. 284341.Google Scholar
Weatherall, J. O. (2016). Are Newtonian gravitation and geometrized Newtonian gravitation theoretically equivalent? Erkenntnis, 81, 10731091.CrossRefGoogle Scholar