Skip to main content
Log in

Use of Carbon Nanostructures in Various 3D Printing Techniques

  • NANOSTRUCTURED MATERIALS
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

A scheme for the full cycle of developing 3D products containing carbon nanostructures (CNSs) was developed. The scheme takes into account the state of initial carbon for the synthesis of CNSs and involves the preparation of CNSs for various 3D printing techniques (FDM, CJP, SLA, SLS) with post-processing of the printed 3D products. The developed cycle allows for the transformation of graphite or other carbon-containing materials into functional 3D products using a 3D printer. The 3D development cycle consists of three stages: Stage I is intended to select the starting material and method for CNS synthesis, Stage II involves preparation of CNSs as a consumable for 3D printing, and Stage III includes printing of a 3D product followed by post-processing. Each stage is described in detail and tested for each 3D printing technique (FDM, CJP, SLA, SLS). The entire range of CNSs (fullerenes and fullerene-like nanostructures, graphenes, carbon nanotubes (CNTs), carbon nanofibers (CNFs), nanocomposites, etc.) and their synthesis employing three methods (plasmaassisted chemical synthesis in gaseous and liquid environments and pyrolytic synthesis) in the 3D printing cycle were analyzed. The advantages and disadvantages of the considered 3D printing processes were addressed, and results of the comparison were summarized in a table. Materials for 3D printing and development of associated composites containing soluble and insoluble CNSs were studied. Methods for processing CNSs and preparing CNS-based composites prior to their use in various 3D printing processes were developed. The post-processing results for 3D products prepared with the FDM, CJP, SLA, and SLS 3D printing processes were provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. A.D. Zolotarenko, A.D. Zolotarenko, A.D. Zolotarenko, G.A. Voichuk, D.V. Shchur, and S.Yu. Zaginaichenko, “Synthesis of endofullerenes with the arc method. Deposit,” Nanosyst. Nanomater. Nanotekhnol., 3, No. 4, 1133–1144 (2005).

    CAS  Google Scholar 

  2. N. A. Gavrylyuk, N.E. Akhanova, D.V. Shchur, A.P. Pomytkin, A. Veziroglu, T.N. Veziroglu, M.T. Gabdullin, T.S. Ramazanov, Ol.D. Zolotarenko, and An.D. Zolotarenko, “Yttrium in fullerenes,” Int. Sci. J. Alternative Energy Ecology (ISJAEE), No. 01–03, 47–76 (2021).

  3. N.Y. Akhanova, D.V. Shchur, A.P. Pomytkin, A.D. Zolotarenko, A.D. Zolotarenko, N.A. Gavrylyuk, M. Ualkhanova, W. Bo, and D. Ang, “Gadolinium endofullerenes,” J. Nanosci. Nanotechnol., 21, No. 4, 2435–2445 (2021), DOI:https://doi.org/10.1166/jnn.2021.18970.

    Article  CAS  Google Scholar 

  4. N.Y. Akhanova, D.V. Shchur, A.P. Pomytkin, A.D. Zolotarenko, A.D. Zolotarenko, N.A. Gavrylyuk, M. Ualkhanova, W. Bo, and D. Ang, “Methods for the synthesis of endohedral fullerenes,” J. Nanosci. Nanotechnol., 21, No. 4, 2446–2459 (2021), DOI:https://doi.org/10.1166/jnn.2021.18971.

    Article  CAS  Google Scholar 

  5. D.V. Shchur, S.Yu. Zaginaichenko, N.S. Anikina, Z.A. Matysina, O.Ya. Krivushchenko, and V.V. Skorokhod, “Discovering the ‘ordering effect’ of the meta-isomer—the product from nitration of mono-substituted benzene and its relation to the reactivity of mono-substituted benzenes in the reactions of intermolecular donor–acceptor interaction with fullerene C60,” in: Proc. 11th Int. Conf. Hydrogen Materials Science and Chemistry of Carbon Nanomaterials (August 25–31, 2009, Yalta, Crimea, Ukraine), pp. 606–607.

  6. Z.A. Matysina, Ol.D. Zolotarenko, O.P. Rudakova, N.Y. Akhanova, A.P. Pomytkin, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, N.A. Gavrylyuk, A.D. Zolotarenko, M.V. Chymbai, and I.V. Zagorulko, “Iron in endometallofullerenes,” Prog. Phys. Met., 23, No. 3, 510–527 (2022).

  7. N.A. Gavrylyuk, N.Y. Akhanova, D.V. Schur, A.P. Pomytkin, A. Veziroglu, T.N. Veziroglu, M.T. Gabdullin, T.S. Ramazanov, Al.D. Zolotarenko, and An.D. Zolotarenko, “Yttrium in fullerenes,” Int. Sci. J. Alternative Energy Ecology (ISJAEE), No. 01–03, 359–361 (2021), https://DOI.org/https://doi.org/10.15518/isjaee.2021.01.004.

  8. N.Y. Akhanova, D.V. Schur, N.A. Gavrylyuk, M.T. Gabdullin, N.S. Anikina, An.D. Zolotarenko, O.Ya. Krivushchenko, Ol.D. Zolotarenko, B.M. Gorelov, E. Erlanuli, and D.G. Batrishev, “Use of absorption spectra for identification of endometallofullerenes,” Chem. Phys. Technol. Surf., 11, No. 3, 429–441 (2020).

  9. M. Baibarac, I. Baltog, S. Frunza, A. Magrez, D. Schur, and S.Y. Zaginaichenko, “Single-walled carbon nanotubes functionalized with polydiphenylamine as active materials for applications in the supercapacitors field,” Diamond Related Mater., 32, 72–82 (2013).

    Article  CAS  Google Scholar 

  10. D.V. Schur, S. Zaginaichenko, and T. Nejat Veziroglu, “Peculiarities of hydrogenation of pentatomic carbon molecules in the frame of fullerene molecule C60,” Int. J. Hydrogen Energy, 33, No. 13, 3330–3345 (2008).

  11. D.V. Schur, M.T. Gabdullin, V.A. Bogolepov, A. Veziroglu, S.Y. Zaginaichenko, A.F. Savenko, and K.A. Meleshevich, “Selection of the hydrogen-sorbing material for hydrogen accumulators,” Int. J. Hydrogen Energy, 41, No. 3, 1811–1818 (2016).

    Article  CAS  Google Scholar 

  12. D.V. Schur, M.T. Gabdullin, S.Yu. Zaginaichenko, T.N. Veziroglu, M.V. Lototsky, V.A. Bogolepov, and A.F. Savenko, “Experimental set-up for investigations of hydrogen-sorption characteristics of carbon nanomaterials,” Int. J. Hydrogen Energy, 41, No. 1, 401–406 (2016).

    Article  CAS  Google Scholar 

  13. N.M. Nishchenko, S.P. Likhtorovich, D.V. Schur, A.G. Dubovoy, and T.A. Rashevskaya, “Positron annihilation in C60 fullerites and fullerene-like nanovoids,” Carbon, 41, No. 7, 1381–1385 (2003).

    Article  CAS  Google Scholar 

  14. S.Y. Zaginaichenko, D.V. Schur, and Z.A. Matysina, “The peculiarities of carbon interaction with catalysts during the synthesis of carbon nanomaterials,” Carbon, 41, No. 7, 1349–1355 (2003).

    Article  CAS  Google Scholar 

  15. E.I. Golovko, A.D. Zolotarenko, A.D. Zolotarenko, G.A. Vojchuk, A.D. Zolotarenko, V.M. Adeev, A.V. Kotko, A.J. Koval, D.V. Schur, and S.J. Zaginaychenko, “Synthesis of platinum-containing carbon nanostructures,” in: Proc. 9th Int. Conf. Hydrogen Materials Science and Chemistry of Carbon Nanomaterials (September 5–11, 2005, Sevastopol, Crimea, Ukraine), pp. 1014–1016.

  16. An.D. Zolotarenko, D.V. Schur, Al.D. Zolotarenko, M.V. Chimbai, O.P. Zolotarenko, and A.D. Zolotarenko, “Analysis identification of platinum-containing nanoproducts of plasma-chemical synthesis in a gaseous medium,” Curr. Trends Chem. Eng. Technol., Issue 01, 1–12 (2018), DOI: https://doi.org/10.29011/CTCEPT-103/100003.

  17. An.D. Zolotarenko, D.V. Schur, Al.D. Zolotarenko, M.V. Chimbai, O.P. Zolotarenko, and A.D. Zolotarenko, “Analysis and identification of platinum-containing nanoproducts of plasma-chemical synthesis in a gaseous medium,” Phys. Sci. Technol., 6, No. 1–2, 46–56 (2019).

  18. A.D. Zolotarenko, A.D. Zolotarenko, V.A. Lavrenko, S.Y. Zaginaichenko, N.A. Shvachko, O.V. Milto, and Y.A. Tarasenko, “Encapsulated ferromagnetic nanoparticles in carbon shells,” in: Carbon Nanomaterials in Clean Energy Hydrogen Systems-II, Springer, Dordrecht (2011), pp. 127–135.

  19. An. Zolotarenko, Ol. Zolotarenko, E. Rudakova, D. Schur, and M. Chymbai, “Carbon nanotubes (CNT) in the plasma-chemical method of synthesis in a gaseous medium,” in; Proc. XVII Int. Sci. Practical Conf. Multidisciplinary Academic Notes. Theory, Methodology and Practice, Tokyo (2022), pp. 29–35.

  20. N. Akhanova, S. Orazbayev, M. Ualkhanova, A.Y. Perekos, A.G. Dubovoy, D.V. Schur, Al.D. Zolotarenko, An.D. Zolotarenko, N.A. Gavrylyuk, M.T. Gabdullin, and T.S. Ramazanov, “The influence of magnetic field on synthesis of iron nanoparticles,” J. Nanosci. Nanotechnol. Appl., 3, No. 3, 1–18 (2019).

  21. Ol.D. Zolotarenko, M.N. Ualkhanova, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, N.A. Gavrylyuk, A.D. Zolotarenko, M.V. Chymbai, I.V. Zagorulko, and O.O. Havryliuk, “Advantages and disadvantages of electric arc methods for the synthesis of carbon nanostructures,” Chem. Phys. Tech. Surf., 13, No. 2, 209–235 (2022).

  22. O.D. Zolotarenko, O.P. Rudakova, M.T. Kartel, H.O. Kaleniuk, A.D. Zolotarenko, D.V. Schur, and Y.O. Tarasenko, “The mechanism of forming carbon nanostructures by electric arc-method,” Surface, 12, No. 27, 263–288 (2020), https://doi.org/10.15407/Surface.2020.12.263.

  23. S.Yu. Zaginaichenko, D.V. Shchur, M.T. Gabdullin, N.F. Dzhavadov, Al.D. Zolotarenko, An.D. Zolotarenko, A.D. Zolotarenko, S.Kh. Mamedova, G.D. Omarova, and Z.T. Mamedova, “Features of pyrolytic synthesis and certification of carbon nanostructured materials,” Int. Sci. J. Alternative Energy Ecology (ISJAEE), No. 19–21, 72–90 (2018), https://doi.org/10.15518/isjaee.2018.19-21.072-090.

  24. V.A. Lavrenko, I.A. Podchernyaeva, D.V. Shchur, A.D. Zolotarenko, and A.D. Zolotarenko, “Features of physical and chemical adsorption during interaction of polycrystalline and nanocrystalline materials with gases,” Powder Metall. Met. Ceram., 56, No. 9–10, 504–511 (2018), DOI: https://doi.org/10.1007/s11106-018-9922-z.

    Article  CAS  Google Scholar 

  25. A.G. Dubovoy, A.E. Perekos, V.A. Lavrenko, T.V. Efimova, V.P. Zalutskii, T.V. Ruzhitska, A.V. Kotko, Al.D. Zolotarenko, and An.D. Zolotarenko, “Effect of the magnetic field on the phase and structural state and magnetic properties of superfine iron powders produced by spark atomization,” Nanosyst. Nanomater. Nanotechnol., 11, Issue 1, 131–140 (2013).

  26. A.D. Zolotarenko, A.D. Zolotarenko, E. Rudakova, S.Y. Zaginaichenko, A.G. Dubovoy, D.V. Schur, and Y.A. Tarasenko, “The peculiarities of nanostructures formation in liquid phase,” in: Carbon Nanomaterials in Clean Energy Hydrogen Systems-II, Springer, Dordrecht (2011), pp. 137–150.

  27. Z.A. Matysina, Ol.D. Zolotarenko, M. Ualkhanova, O.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, N.A. Gavrylyuk, O.D. Zolotarenko, M.V. Chymbai, and I.V. Zagorulko, “Electric arc methods to synthesize carbon nanostructures,” Prog. Phys. Met., 23, No. 3, 528–559 (2022).

  28. S. Iijima, “Helical microtubules of graphitic carbon,” Nature, 354, 56–58 (1991).

    Article  CAS  Google Scholar 

  29. D.V. Schur, S.Y. Zaginaichenko, and T.N. Veziroglu, “The hydrogenation process as a method of investigation of fullerene C60 molecule,” Int. J. Hydrogen Energy, 40, No. 6, 2742–2762 (2015).

    Article  CAS  Google Scholar 

  30. We Are Going toward the Nobel Prize, Ukrainian Hydrogen Energy Association, http://www.aheu.com.ua/award.html.

  31. Ol.D. Zolotarenko, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, N.A. Gavrylyuk, M.V. Chymbai, Yu.O. Tarasenko, I.V. Zagorulko, and A.D. Zolotarenko, “Electric conductive composites based on metal oxides and carbon nanostructures,” Metallofiz. Noveish. Tekhnol., 43, No. 10, 1417–1430 (2021).

  32. A.A. Volodin, A.D. Zolotarenko, A.A. Belmesov, E.V. Gerasimov, D.V. Shchur, V.R. Tarasov, S.Yu. Zaginaichenko, S.V. Doroshenko, An.D. Zolotarenko, and Al.D. Zolotarenko, “Conductive composite materials based on metal oxides and carbon nanostructures,” Nanosyst. Nanomater. Nanotechnol., 12, Issue 4, 705–714 (2014).

  33. Ol. Zolotarenko, E. Rudakova, A. Zolotarenko, and D. Schur, “Synthesis of platinum-containing carbon nanostructures for CJP 3D printing technology as a solution to the problem of creating cheap hydrogen fuel cells,” in: Proc. X Int. Sci. Practical Conf. Modern Problems in Science, Vancouver (2022), pp. 60–68.

  34. V.A. Lavrenko, D.V. Shchur, An.D. Zolotarenko, and Al.D. Zolotarenko, “Electrochemical synthesis of ammonium persulfate (NH4)2S2O8 using oxygen-depolarized porous silver cathodes produced by powder metallurgy methods,” Powder Metall. Met. Ceram., 57, No. 9–10, 596–604 (2019).

  35. O.D. Zolotarenko, A.D. Zolotarenko, and D.V. Schur, “Advantages of FDM 3D printing technology and practical use of new composites based on solid polymers filled with carbon nanostructures,” in: Abstracts IV Int. Sci. Practical Conf. Actual Problems of Practice and Science and Methods of Their Solution, Milan (2022), pp. 134−140.

  36. O.D. Zolotarenko, A.D. Zolotarenko, and D.V. Schur, “Nanotubes in ceramic composites for practical applications in 3D printing (CJP),” in: Abstracts VI Int. Sci. Practical Conf. Tendencies of Development Science and Practice, Boston (2022), pp. 73–80.

  37. Ol.D. Zolotarenko, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, M. Sultangazina, N.A. Gavrylyuk, M.V. Chymbai, A.D. Zolotarenko, I.V. Zagorulko, and Yu.O. Tarasenko, “Plasmochemical synthesis of platinum-containing carbon nanostructures suitable for CJP 3D-printing,” Metallofiz. Noveish. Tekhnol., 44, No. 3, 343–364 (2022).

  38. O.D. Zolotarenko, E.P. Rudakova, A.D. Zolotarenko, N.Y. Akhanova, M.N. Ualkhanova, D.V. Shchur, M.T. Gabdullin, N.A. Gavrylyuk, T.V. Myronenko, A.D. Zolotarenko, M.V. Chymbai, I.V. Zagorulko, Yu.O. Tarasenko, and O.O. Havryliuk, “Platinum-containing carbon nanostructures for the creation of electrically conductive ceramics using 3D printing of CJP technology,” Chem. Phys. Tech. Surf., 13, No. 3, 259–273 (2022).

    CAS  Google Scholar 

  39. S.A. Baskakov, A.D. Zolotarenko, Yu.V. Baskakova, Yu.M. Shulga, D.V. Shchur, I.E. Kuznetsov, O.N. Efimov, A.L. Gusev, and S.V. Doroshenko, “New composites based on reduced graphene oxide and polyaniline in high-capacitance supercapacitors,” Nanosyst. Nanomater. Nanotechnol., 13, Issue 1, 37–57 (2015).

    Google Scholar 

  40. Z.A. Matysina, S.Yu. Zaginaichenko, D.V. Shchur, A. Veziroglu, T.N. Veziroglu, M.T. Gabdullin, N.F. Dzhavadov, An.D. Zolotarenko, and Al.D. Zolotarenko, Hydrogen in Crystals [in Russian], Izd. KIM, Kyiv (2017), p. 1061.

  41. Z.A. Matysina, S.Y. Zaginaichenko, D.V. Schur, T.N. Veziroglu, A. Veziroglu, M.T. Gabdullin, Al.D. Zolotarenko, and An.D. Zolotarenko, “The mixed lithium–magnesium imide Li2Mg (NH)2 a promising and reliable hydrogen storage material,” Int. J. Hydrogen Energy, 43, No. 33, 16092–16106 (2018).

  42. D.V. Shchur, S.Yu. Zaginaichenko, A. Veziroglu, T.N. Veziroglu, A.D. Zolotarenko, M.T. Gabdullin, T.S. Ramazanov, Al.D. Zolotarenko, and An.D. Zolotarenko, “Features of studying the atomic hydrogen–metal systems,” Int. Sci. J. Alternative Energy Ecology (ISJAEE), No. 13–15, 62–87 (2019).

  43. Z.A. Matysina, S.Y. Zaginaichenko, D.V. Schur, A.D. Zolotarenko, A.D. Zolotarenko, M.T. Gabdulin, L.I. Kopylova, and T.I. Shaposhnikova, “Phase transformations in the mixed lithium–magnesium imide Li2Mg(NH)2,” Russ. Phys. J., 61, No. 12, 2244–2252 (2019).

    Article  CAS  Google Scholar 

  44. D.V. Schur, A. Veziroglu, S.Y. Zaginaychenko, Z.A. Matysina, T.N. Veziroglu, M.T. Gabdullin, T.S. Ramazanov, A.D. Zolotarenko, and A.D. Zolotarenko, “Theoretical studies of lithium–aluminum amid and ammonium as perspective hydrogen storage,” Int. J. Hydrogen Energy, 44, No. 45, 24810–24820 (2019).

    Article  CAS  Google Scholar 

  45. Z.A. Matysina, S.Yu. Zaginaichenko, D.V. Shchur, A.D. Zolotarenko, A.D. Zolotarenko, and M.T. Gabdullin, “Bi-alkaline and potassium alanates—promising hydrogen accumulators,” Int. Sci. J. Alternative Energy Ecology (ISJAEE), No. 13–15, 37–60 (2017).

  46. Z.A. Matysina, S.Y. Zaginaichenko, D.V. Schur, A.D. Zolotarenko, A.D. Zolotarenko, and M.T. Gabdulin, “Hydrogen sorption properties of potassium alanate,” Russ. Phys. J., 61, No 2, 253–263 (2018).

    Article  CAS  Google Scholar 

  47. A.D. Zolotarenko, A.D. Zolotarenko, A. Veziroglu, T.N. Veziroglu, N.A. Shvachko, A.P. Pomytkin, D.V. Schur, N.A. Gavrylyuk, T.S. Ramazanov, N.Y. Akhanova, and M.T. Gabdullin, “Methods of theoretical calculations and of experimental researches of the system atomic hydrogen–metal,” Int. J. Hydrogen Energy, 47, No. 11, 7310–7327 (2022), DOI: https://doi.org/https://doi.org/10.1016/j.ijhydene.2021.03.065.

    Article  CAS  Google Scholar 

  48. Z.A. Matysina, N.A. Gavrylyuk, M. Kartel, A. Veziroglu, T.N. Veziroglu, A.P. Pomytkin, D.V. Schur, T.S. Ramazanov, M.T. Gabdullin, A.D. Zolotarenko, A.D. Zolotarenko, and N.A. Shvachko, “Hydrogen sorption properties of new magnesium intermetallic compounds with MgSnCu4 type structure,” Int. J. Hydrogen Energy, 46, No. 50, 25520–25532 (2021).

    Article  CAS  Google Scholar 

  49. An.D. Zolotarenko, Al.D. Zolotarenko, A. Veziroglu, T.N. Veziroglu, N.A. Shvachko, A.P. Pomytkin, N.A. Gavrylyuk, D.V. Schur, T.S. Ramazanov, and M.T. Gabdullin, “The use of ultrapure molecular hydrogen enriched with atomic hydrogen in apparatuses of artificial lung ventilation in the fight against virus COVID-19,” Int. J. Hydrogen Energy, 47, No. 11, 7281–7288 (2022).

  50. D.V. Shchur, S.Y. Zaginaichenko, A. Veziroglu, T.N. Veziroglu, N.A. Gavrylyuk, A.D. Zolotarenko, M.T. Gabdullin, T.S. Ramazanov, A.D. Zolotarenko, and A.D. Zolotarenko, “Prospects of producing hydrogen-ammonia fuel based on lithium aluminum amide,” Russ. Phys. J., 64, No. 1, 89–103 (2021), https://doi.org/https://doi.org/10.1007/s11182-021-02304-7.

    Article  CAS  Google Scholar 

  51. D.V. Shchur, S.Yu. Zaginaichenko, A. Veziroglu, N. Veziroglu, A.D. Zolotarenko, M.T. Gabdullin, T.S. Ramazanov, Al.D. Zolotarenko, An.D. Zolotarenko, and N.A. Gavrylyuk, “Prospects of producing hydrogen–ammonium fuel using lithium–aluminum amide,” Izv. Vys. Ucheb. Zav. Fiz., 64, No. 1, 78–89 (2021).

  52. Z.A. Matysina, S.Yu. Zaginaichenko, D.V. Shchur, A.D. Zolotarenko, A.D. Zolotarenko, and M.T. Gabdullin, “Hydrogen-sorption properties of potassium alanates,” Izv. Vys. Ucheb. Zav. Fiz., 61, No. 2, 44–53 (2018).

    Google Scholar 

  53. D.V. Schur, S.Yu. Zaginaichenko, T.N. Veziroglu, A. Veziroglu, A.P. Pomytkin, An.D. Zolotarenko, A.D. Zolotarenko, and Al.D. Zolotarenko, “Interaction of elements with hydrogen and with each other,” Int. Assoc. Hydrogen Energy (IAHE) (2018), http://www.iahe.org/News.asp?id=71&http://aheu.com.ua/TabMen/ index.html.

  54. Z.A. Matysina, S.Yu. Zaginaichenko, D.V. Shchur, Al.D. Zolotarenko, An.D. Zolotarenko, M.T. Gabdullin, L.I. Kopylova, and T.I. Shaposhnikova, “Phase transformations in mixed lithium–magnesium imide Li2Mg(NH)2,” Izv. Vys. Uczeb. Zav. Fiz., 61, No. 12, 90–96 (2018).

  55. Ol.D. Zolotarenko, O.P. Rudakova, An.D. Zolotarenko, D.V. Shchur, N.A. Gavrylyuk, N.T. Kartel, A.D. Zolotarenko, and V.A. Mashira, “Interstitial atoms in octahedral and tetrahedral nodes of bcc crystals with free surface,” Vest. Ser. Fiz., 81, No. 2, 68–77 (2022).

  56. An. Zolotarenko, Ol. Zolotarenko, E. Rudakova, D. Schur, and M. Chymbai, “Innovative hydrogen sorbents based on magnesium alloys,” in: Proc. VII Int. Sci. Practical Conf. Innovative Trends in Science, Practice and Education, Munich (2022), pp. 70–79.

  57. An.D. Zolotarenko, O.D. Zolotarenko, and D.V. Schur, “Hydrogen sorption properties of hydrointermetallide MgCeCo4Hx for practical application,” in: Abstracts VI Int. Sci. Practical Conf. Tendencies of Development Science and Practice, Boston (2022), pp. 65–72.

  58. O.D. Zolotarenko, A.D. Zolotarenko, and D.V. Schur, “Modern hydrogen storage,” in: Abstracts III Int. Sci. Practical Conf. Modern Challenges to Science and Practice, Varna (2022), pp. 528–535.

  59. Z.A. Matysina, An.D. Zolotarenko, Al.D. Zolonarenko, N.A. Gavrylyuk, A. Veziroglu, T.N. Veziroglu, A.P. Pomytkin, D.V. Schur, and M.T. Gabdullin, Features of the Interaction of Hydrogen with Metals, Alloys and Compounds (Hydrogen Atoms in Crystalline Solids), Monograph, KIM Publishing House, Kyiv (2022), p. 490.

  60. D.V. Schur, S.Yu. Zaginaichenko, Z.A. Matysina, I. Smityukh, and V.K. Pishuk, “Hydrogen in lanthan–nickel storage alloys,” J. Alloys Compd., 330–332, 70–75 (2002).

    Article  Google Scholar 

  61. Yu.M. Lytvynenko and D.V. Schur, “Utilization the concentrated solar energy for process of deformation of sheet metal,” Renewable Energy, 16, No. 1–4, 753–756 (1999).

    Article  Google Scholar 

  62. Z.A. Matysina, O.S. Pogorelova, S.Yu. Zaginaichenko, and D.V. Schur, “The surface energy of crystalline CuZn and FeAl alloys,” J. Phys. Chem. Solids, 56, No. 1, 9–14 (1995).

    Article  CAS  Google Scholar 

  63. Z.A. Matysina and D.V. Shchur, “Phase transformations α → β → γ → δ → ε in titanium hydride TiHx with increase in hydrogen concentration,” Russ. Phys. J., 44, No. 11, 1237–1243 (2001).

    Article  CAS  Google Scholar 

  64. Z.A. Matysina, S.Yu. Zaginaichenko, and D.V. Schur, “Hydrogen solubility in alloys under pressure,” Int. J. Hydrogen Energy, 21, No. 11–12 (Spec. Issue), 1085–1089 (1996).

  65. S.Y. Zaginaichenko, Z.A. Matysina, D.V. Schur, and A.D. Zolotarenko, “Li–N–H system—reversible accumulator and store of hydrogen,” Int. J. Hydrogen Energy, 37, No. 9, 7565–7578 (2012).

    Article  CAS  Google Scholar 

  66. D.V. Schur, A.A. Lyashenko, V.M. Adejev, V.B. Voitovich, and S.Yu. Zaginaichenko, “Niobium as a construction material for a hydrogen energy system,” Int. J. Hydrogen Energy, 20, No. 5, 405–407 (1995).

    Article  CAS  Google Scholar 

  67. D.V. Schur, V.A. Lavrenko, V.M. Adejev, and I.E. Kirjakova, “Studies of the hydride formation mechanism in metals,” Int. J. Hydrogen Energy, 19, No. 3, 265–268 (1994).

    Article  CAS  Google Scholar 

  68. A.M. Prokhorov (ed.), Great Soviet Encyclopedia [in Russian], in 30 Vols., 3rd ed., Sov. Entsyklop., Moscow (1969–1978).

  69. D.V. Shchur, Yu.M. Shulga, B.P. Tarasov, and S.Yu. Zaginaichenko, “Some properties of materials produced by the electric arc sputtering of graphite-cobalt-nickel electrodes,” in: Abstracts Int. Conf. Carbon Nanotube (April 10–11, 2000, USA, FL, Miami), Miami (2000), p. 186.

  70. Ol.D. Zolotarenko, E.P. Rudakova, N.Yu. Akhanova, An.D. Zolotarenko, D.V. Shchur, Z.A. Matysina, M.T. Gabdullin, M. Ualkhanova, N.A. Gavrylyuk, A.D. Zolotarenko, M.V. Chymbai, and I.V. Zagorulko, “Comparative analysis of products of the fullerenes’ and carbon-nanostructures’ synthesis using the SIGE and FGDG-7 grades of graphite,” Nanosyst. Nanomater. Nanotekhnol., 20, No. 3, 725–744 (2022), https://doi.org/10.15407/nnn.20.03.725.

  71. Z.A. Matysina, An.D. Zolotarenko, Al.D. Zolotarenko, M.T. Kartel, A. Veziroglu, T.N. Veziroglu, N.A. Gavrylyuk, D.V. Schur, M.T. Gabdullin, N.E. Akhanova, T.S. Ramazanov, M. Ualkhanova, and N.A. Shvachko, “Hydrogen in magnesium alanate Mg(AlH4)2, aluminum and magnesium hydrides,” Int. J. Hydrogen Energy, 48, Issue 6, 2271–2293 (2023), https://doi.org/10.1016/j.ijhydene.2022.09.225.

  72. M.N. Ualkhanova, A.S. Zhakypov, R.R. Nemkayeva, M.B. Aitzhanov, B.Y. Kurbanov, N.Y. Akhanova, Y. Yerlanuly, S.A. Orazbayev, D. Shchur, A. Zolotarenko, and M.T. Gabdullin, “Synthesis of graphiteencapsulated Ni micro- and nanoparticles using liquid-phase arc discharge,” Energies, 16, No. 3, 1450 (2023), https://doi.org/https://doi.org/10.3390/en16031450.

    Article  CAS  Google Scholar 

  73. Ol.D. Zolotarenko, E.P. Rudakova, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, N.A. Gavrylyuk, M.V. Chymbai, T.V. Myronenko, I.V. Zagorulko, A.D. Zolotarenko, and O.O. Havryliuk, “Electrically conductive composites based on TiO2 and carbon nanostructures manufactured using 3D printing of CJP technology,” Chem. Phys. Tech. Surf., 13, No. 4, 415–424 (2022).

  74. V. Podhurska, D. Brodnikovskyi, B. Vasyliv, M. Gadzyra, S. Tkachenko, L. Čelko, O. Ostash, I. Brodnikovska, Ye. Brodnikovskyi, and O. Vasylyev, “Ti–Si–C in-situ composite as a potential material for lightweight SOFC interconnects,” in: Promising Materials and Processes in Applied Electrochemistry, Monograph, KNUTD, Kyiv (2020), pp. 54_69.

  75. O.D. Zolotarenko, E.P. Rudakova, N.Y. Akhanova, M. Ualkhanova, A.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, N.A. Gavrylyuk, T.V. Myronenko, A.D. Zolotarenko, M.V. Chymbai, I.V. Zagorulko, Y.O. Tarasenko, and O.O. Havryliuk, “Synthesis of carbon nanostructures using cheap grades of graphite,” Surface, 14, No. 29, 113–131 (2022), https://doi.org/10.15407/Surface.2022.14.113.

  76. O.D. Zolotarenko, N.Y. Akhanova, A.D. Zolotarenko, D.V. Shchur, M.T. Gabdullin, M. Ualkhanova, N.A. Gavrylyuk, A.D. Zolotarenko, M.V. Chymbai, E.P. Rudakova, T.V. Myronenko, I.V. Zagorulko, O.O. Havryliuk, and Y.O. Tarasenko, “Modern methods of obtaining iron endofullerenes,” Surface, 14, No. 29, 193–212 (2022), https://doi.org/10.15407/Surface.2022.14.193.

  77. Ol.D. Zolotarenko, E.P. Rudakova, V.A. Lavrenko, N.Y. Akhanova, An.D. Zolotarenko, D.V. Shchur, Z.A. Matysina, M.T. Gabdullin, M. Ualkhanova, N.A. Gavrylyuk, O.D. Zolotarenko, M.V. Chymbai, and I.V. Zagorulko, “Features of electrochemical (anode) synthesis of nickel and copper nanocrystalline powder,” Nanosyst. Nanomater. Nanotekhnol., 20, No. 4, 857–873 (2022), https://doi.org/10.15407/nnn.20.04.857.

  78. O. Zolotarenko, E. Rudakova, I. Zagorulko, N. Akhanova, A. Zolotarenko, D. Schur, M. Gabdullin, M. Ualkhanova, T. Myronenko, A. Zolotarenko, M. Chymbai, and O. Dubrova, “Comparative analysis of products of electric arc synthesis using graphite of different grades,” Ukr. J. Phys., 68, No. 1, 57 (2023), https://doi.org/10.15407/ujpe68.1.57.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An. D. Zolotarenko.

Additional information

Translated from Poroshkova Metallurgiya, Vol. 61, Nos. 11–12 (548), pp. 49–72, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zolotarenko, O.D., Rudakova, E.P., Zolotarenko, A.D. et al. Use of Carbon Nanostructures in Various 3D Printing Techniques. Powder Metall Met Ceram 61, 670–690 (2023). https://doi.org/10.1007/s11106-023-00355-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-023-00355-8

Keywords

Navigation