Skip to main content

Advertisement

Log in

Effect of the ZrO2-Based Solid Solution on the Low-Temperature Phase Stability of ZrO2−Y2O3−CeO2 Materials

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The low-temperature phase stability of 97 mol.% ZrO2–3 mol.% Y2O3, 95 mol.% ZrO2–3 mol.% Y2O3–2 mol.% CeO2, 92.5 mol.% ZrO2–2.5 mol.% Y2O3–5 mol.% CeO2, 90 mol.% ZrO2–2 mol.% Y2O3–8 mol.% CeO2, and 88 mol.% ZrO2–12 mol.% CeO2 materials in the ZrO2–Y2O3–CeO2 system was studied. The phase stability was determined through accelerated aging in hydrothermal conditions for 7 h and 14 h. The evaluation criterion was the amount of the M-ZrO2 phase that formed in the samples when aged in hydrothermal conditions. The properties of the materials were analyzed by X-ray diffraction and electron microscopy. The T-ZrO2 → M-ZrO2 phase transformation occurred to varying degrees in all samples except for the 88 mol.% ZrO2–12 mol.% CeO2 sample after the first and second aging cycles. The smallest amount of M-ZrO2 formed in the 90 mol.% ZrO2–2 mol.% Y2O3–8 mol.% CeO2 sample. After both aging cycles, the fracture patterns for the 90 mol.% ZrO2–2 mol.% Y2O3–8 mol.% CeO2 and 88 mol.% ZrO2–12 mol.% CeO2 samples did not change significantly. With the complex stabilization of zirconia by yttria and ceria, the T-ZrO2 → M-ZrO2 phase transformation was controlled in the aging process by the number of oxygen vacancies resulting from the presence of yttria and by the stresses induced by the presence of ceria in the solid solutions. The number of oxygen vacancies decreased as ceria content in the ZrO2-based solid solutions increased, slowing down the rate of water diffusion and enhancing the low-temperature phase stability in the ZrO2–Y2O3–CeO2 materials. The effectiveness of using the 90 mol.% ZrO2–2 mol.% Y2O3–8 mol.% CeO2 and 88 mol.% ZrO2–12 mol.% CeO2 composites for the microstructural design of medical materials with increased resistance to low-temperature degradation in humid environments was shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. J. Chevalier and L. Gremillard, “Ceramics for medical applications: A picture for the next 20 years,” J. Eur. Ceram. Soc., 29, No. 7, 1245−1255 (2009), doi:https://doi.org/10.1016/j.jeurceramsoc.2008.08.025.

    Article  CAS  Google Scholar 

  2. S. Ramesh, K.Y. Sara Lee, and C.Y. Tan, “A review on the hydrothermal aging behavior of Y-TZP ceramics,” Ceram. Int., 44, Issue 17, 20620−20634 (2018), doi:https://doi.org/10.4047/jap.2020.12.5.265.

  3. J.E.V. Amarante, M.V.S. Pereira, G.M.D. Souza, M.F.R. Pais-Alves, B.G. Simba, and C.D. Santos, “Effect of hydrothermal aging on the properties of zirconia with different levels of translucency,” J. Mech. Behav. Biomed. Mater., 109, 103847 (2020), doi.org/https://doi.org/10.1016/j.jmbbm.2020.103847.

  4. J. Chevalier, L. Gremillard, and S. Deville, “Low-temperature degradation of zirconia and implications for biomedical implants,” Ann. Rev. Mater. Res., 37, 1−32 (2007), DOI:https://doi.org/10.1146/annurev.matsci.37.052506.084250.

    Article  CAS  Google Scholar 

  5. H. Schubert and F. Frey, “Stability of Y-TZP during hydrothermal treatment. Neutron experiments and stability considerations,” J. Eur. Ceram. Soc., 25, 1597−1602 (2005), https://doi.org/10.1016/j.jeurceramsoc.2004.03.025.

    Article  CAS  Google Scholar 

  6. J. Chevalier, Al. Liens, H. Reveron, F. Zhang, P. Reynaud, Th. Douillard, L. Preiss, V. Sergo, V. Lughi, M. Swain, and N. Courtois, “Forty years after the promise of “ceramic steel”: zirconia-based composites with a metal-like mechanical behavior,” J. Am. Ceram. Soc., 103, 1482–1513 (2020), https://doi.org/10.1111/jace.16903.

  7. C. Santos, I.F. Coutinho, J.E.V. Amarante, M.F.R. Pais Alves, M.M. Coutinho, and C.R.M. Silva, “Mechanical properties of ceramic composites based on ZrO2 co-stabilized by Y2O3–CeO2 reinforced with Al2O3 platelets for dental implants,” J. Mech. Behav. Biomed. Mater., 116, 104372 (2021), doi.org/https://doi.org/10.1016/j.jmbbm.2021.104372.

  8. E.V. Dudnik, S.N. Lakiza, Ya.S. Tishchenko, A.K. Ruban, V.P. Redko, A.V. Shevchenko, and L.M. Lopato, “Phase diagrams of refractory oxide systems and microstructural design of materials,” Powder Metall. Met. Ceram., 53, No. 5–6, 303–311 (2014).

    Article  CAS  Google Scholar 

  9. I.O. Marek, O.K. Ruban, V.P. Redko, M.I. Danilenko, S.A. Korniy, and O.V. Dudnik, “Physicochemical properties of hydrothermal nanocrystalline ZrO2–Y2O3–CeO2 powders,” Powder Metall. Met. Ceram., 58, No. 3–4, 125–132 (2019).

    Article  CAS  Google Scholar 

  10. I.O. Marek, O.V. Dudnik, S.A. Korniy, V.P. Redko, M.I. Danilenko, and O.K. Ruban, “Effect of heat treatment in the temperature range 400–1300°C on the properties of nanocrystalline ZrO2–Y2O3–CeO2 powders,” Powder Metall. Met. Ceram., 60, No. 7–8, 385–395 (2021).

    Article  CAS  Google Scholar 

  11. V.G. Zavodinskii, “Studying the mechanism of phase stability of zirconium dioxide doped with magnesium and calcium,” Perspekt. Mater., No. 2, 5−9 (2005).

  12. L. Ping, Ch. I-Wei, and P.-H.E. James, “Effect of dopants on zirconia stabilization—an X-ray absorption study: I. Trivalent dopants,” J. Am. Ceram. Soc., 77, No. 1, 118–128 (1994).

  13. L. Ping, Ch. I-Wei, and P.-H.E. James, “Effect of dopants on zirconia stabilization—an X-ray absorption study: II. Tetravalent dopants,” J. Am. Ceram. Soc., 77, No. 5, 1281–1288 (1994).

  14. Sh. Jiang, X. Huang, Zh. He, and A. Buyers, “Phase transformation and lattice parameter changes of non-trivalent rare earth-doped YSZ as a function of temperature,” JMEPEG, 27, 2263–2270 (2018), DOI: https://doi.org/10.1007/s11665-018-3159-3.

    Article  CAS  Google Scholar 

  15. R.D. Shannon, “Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., A32, 751–767 (1976), https://doi.org/10.1107/S0567739476001551.

    Article  Google Scholar 

  16. P.F. Manicone, P.R. Lommetti, and L. Raffaelli, “An overview of zirconia ceramics: Basic properties and clinical applications,” J. Dent., 35, 819−826 (2007), DOI: https://doi.org/10.1016/j.jdent.2007.07.008.

    Article  CAS  Google Scholar 

  17. R.H.J. Hannink, P.M. Kelly, and B.C. Muddle, “Transformation toughening in zirconia-containing ceramics,” J. Am. Ceram. Soc., 83, No. 3, 461–487 (2000), https://doi.org/10.1111/j.1151-2916.2000.tb01221.x.

    Article  CAS  Google Scholar 

  18. S. Deville, J. Chevalier, and H. El Attaoui, “Atomic force microscopy study and qualitative analysis of martensite relief in zirconia,” J. Am. Ceram. Soc., 88, No. 5, 1261–1267 (2005), https://doi.org/10.1111/j.1551-2916.2005.00174.x.

    Article  CAS  Google Scholar 

  19. M.W. Pitcher, S.V. Ushakov, A. Navrotsky, B.F. Woodfield, G. Li, J. Boerio-Goates, and B.M. Tissue, “Energy crossovers in nanocrystalline zirconia,” J. Am. Ceram. Soc., 88, No. 1, 160–167 (2005), https://doi.org/10.1111/j.1551-2916.2004.00031.x.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. O. Marek.

Additional information

Translated from Poroshkova Metallurgiya, Vol. 61, Nos. 11–12 (548), pp. 116–126, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marek, I.O., Dudnik, O.V., Korniy, S.A. et al. Effect of the ZrO2-Based Solid Solution on the Low-Temperature Phase Stability of ZrO2−Y2O3−CeO2 Materials. Powder Metall Met Ceram 61, 727–735 (2023). https://doi.org/10.1007/s11106-023-00359-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-023-00359-4

Keywords

Navigation