Skip to main content
Log in

Force Characteristics of Yersinia pestis Lipopolysaccharide Interaction with TLR4 and CD14 Receptors on J774 Macrophages: Atomic Force Microscopy

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

One of the main stages of the infectious process, which largely determines the course and outcome of the disease, is the primary contact of the pathogen with the host cells. A key role in this interaction of gram-negative bacteria with immunocompetent cells of the macroorganism is played by lipopolysaccharide of the outer membrane, which initiates the launch and development of immune reactions by interacting with a number of specific receptors, primarily CD14 and TLR4. The aim of this study was to quantify by atomic force microscopy the force characteristics of the interaction of Yersinia pestis lipopolysaccharide of the EV vaccine strain with CD14 and TLR4 receptors on the surface of murine J774 macrophages. The lipopolysaccharide was isolated from Y. pestis cells of the EV vaccine strain grown at 27°C. Fluorescence and confocal microscopy were used to evaluate the expression of receptors on the cell surface. Using monoclonal antibodies to CD14 and TLR4 receptors, the force characteristics of the interaction of lipopolysaccharide on the surface of the cantilever probe (tip) with J774 macrophages were evaluated by force spectroscopy. The conditions of immobilization of J774 macrophages on glass made it possible to scan their surface and assess the force of adhesion to the cells of target antigens by atomic force microscopy. Incubation of immobilized macrophages in solutions with monoclonal antibodies to CD14 and TLR4 receptors caused a decrease in the main force characteristics of interaction in the J774 macrophage–Y. pestis lipopolysaccharide system compared with intact, untreated cells. A similar effect was observed after pretreatment of cells with a solution of the same lipopolysaccharide without monoclonal antibodies. The results obtained indicate the ability of the lipopolysaccharide chemically bound to the probe to interact with CD14 and TLR4 receptors on the surface of macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Knirel Y.A., Anisimov A.P. 2012. Lipopolysaccharide of Yersinia pestis, the cause of plague: Structure, genetics, biological properties. Acta Naturae. 4 (3), 46–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Leo J.C., Skurnik M. 2011. Adhesins of human pathogens from the genus Yersinia. Adv. Exp. Med. Biol. 715, 1–15.

    Article  CAS  PubMed  Google Scholar 

  3. Konyshev I.V., Ivanov S.A., Kopylov P.Kh., Anisimov A.P., Dentovskaya S.V., Byvalov A.A. 2022. The role of Yersinia pestis antigens in adhesion to J774 macrophages: an optical trapping study. Appl. Biochem. M-icrobiol. 58, 394–400.

    Article  CAS  Google Scholar 

  4. Park B.S., Lee J.O. 2013. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp. Mol. Med. 45 (12), e66.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kim S.J., Kim H.M. 2017. Dynamic lipopolysaccharide transfer cascade to TLR4/MD2 complex via LBP and CD14. BMB Rep. 50 (2), 55–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Matsuura M., Takahashi H., Watanabe H., Saito S., Kawahara K. 2010. Immunomodulatory effects of Yersinia pestis lipopolysaccharides on human macrophages. Clin. Vaccine Immunol. 17 (1), 49–55.

    Article  CAS  PubMed  Google Scholar 

  7. Yang K., He Y., Park C.G., Kang Y.S., Zhang P., Han Y., Cui Y., Bulgheresi S., Anisimov A.P., Dentovskaya S.V., Ying X., Jiang L., Ding H., Njiri O.A., Zhang S., Zheng G., Xia L., Kan B., Wang X., Jing H., Yan M., Li W., Wang Y., Xiamu X., Chen G., Ma D., Bartra S.S., Plano G.V., Klena J.D., Yang R., Skurnik M., Chen T. 2019. Yersinia pestis interacts with SIGNR1 (CD209b) for promoting host dissemination and infection. Front. Immunol. 10, 96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Westphal O., Jann K. 1965. Bacterial lipopolysaccharides. Extraction with phenolwater and further applications of the procedure. Methodes Carbohydr. Chem. 5, 83–91.

    CAS  Google Scholar 

  9. Ebner A., Wildling L., Gruber H.J. 2019. Functionalization of AFM tips and supports for molecular recognition force spectroscopy and recognition imaging. Methods Mol. Biol. 1886, 117–151.

    Article  CAS  PubMed  Google Scholar 

  10. Pi J., Cai J. 2019. Cell topography and its quantitative imaging by AFM. In: Atomic force microscopy: Methods and protocols. Eds. Santos N.C., Carvalho F.A. New York: Humana New York, p. 99–113.

  11. Hutter J.L., Chen J., Wan W.K., Uniyal S., Leabu M., Chan B.M.C. 2005. Atomic force microscopy investigation of the dependence of cellular elastic moduli on glutaraldehyde fixation. J. Microscopy. 219 (2), 61–68.

    Article  CAS  Google Scholar 

  12. Vaure C., Liu Y. 2014. A comparative review of Toll-like receptor 4 expression and functionality in different animal species. Front Immunol. 5, 316.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mahnke K., Becher E., Ricciardi-Castagnoli P., Luger T.A., Schwarz T., Grabbe S. 1997. CD14 is expressed by subsets of murine dendritic cells and upregulated by lipopolysaccharide. Adv. Exp. Med. Biol. 417, 145–159.

  14. Sabroe I., Jones E.C., Usher L.R., Whyte M.K.B., Dower S.K. 2002. Toll-like receptor (TLR)2 and TLR4 in human peripheral blood granulocytes: A critical role for monocytes in leukocyte lipopolysaccharide responses. J. Immunol. 168, 4701–4710.

    Article  CAS  PubMed  Google Scholar 

  15. Choi S.-H., Harkewicz R., Lee J.H., Boullier A., Almazan F., Li A.C., Witztum J.L., Bae Y.S., Miller Y.I. 2009. Lipoprotein accumulation in macrophages via TLR4-dependent fluid phase uptake. Circ. Res. 104 (12), 1355–1363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wei M.-T., Hua K.-F., Hsu J., Karmenyan A., Tseng K.-Y., Wong C.-H., Hsu H.-Y., Chiou A. 2007. The interaction of lipopolysaccharide with membrane receptors on macrophages pretreated with extract of Reishi polysaccharides measured by optical tweezers. Optics Express. 15, 11020–11032.

    Article  CAS  PubMed  Google Scholar 

  17. Byvalov A.A., Belozerov V.S., Ananchenko B.A., Konyshev I.V. 2022. Specific and nonspecific interactions of Yersinia pseudotuberculosis lipopolysaccharide with monoclonal antibodies assessed by atomic force microscopy. Biophysics. 67, 856–866.

    Article  CAS  Google Scholar 

  18. Arnal L., Longo G., Stupar P., Castez M.F., Cattelan N., Salvarezza R.C., Yantorno O.M., Kasas S., Vela M.E. 2015. Localization of adhesins on the surface of a pathogenic bacterial envelope through atomic force microscopy. Nanoscale. 7 (41), 17563–17572.

    Article  CAS  PubMed  Google Scholar 

  19. Richter W., Vogel V., Howe J., Steiniger F., Brauser F., Koch M.H.J., Roessle M., Gutsmann T., Garidel P., Mäntele W., Brandenburg K. 2010. Morphology, size distribution, and aggregate structure of lipopolysaccharide and lipid A dispersions from enterobacterial origin. Innate Immunity. 17 (5), 1–12.

    Google Scholar 

  20. Bergstrand A., Svanberg C., Langton M., Nyden M. 2006. Aggregation behavior and size of lipopolysaccharide from Escherichia coli O55:B5. Colloids Surf. B Biointerfaces. 53 (1), 9–14.

    Article  CAS  PubMed  Google Scholar 

  21. Santos N.C., Silva A.C., Castanho M.A., Martins-Silva J., Saldanha C. 2003. Evaluation of lipopolysaccharide aggregation by light scattering spectroscopy. Chembiochem. 4 (1), 96–100.

    Article  CAS  PubMed  Google Scholar 

  22. Yang K., Park C.G., Cheong C., Bulgheresi S., Zhang S., Zhang P., He Y., Jiang L., Huang H., Ding H., Wu Y., Wang S., Zhang L., Li A., Xia L., Bartra S.S., Plano G.V., Skurnik M., Klena J.D., Chen T. 2015. Host Langerin (CD207) is a receptor for Yersinia pestis phagocytosis and promotes dissemination. Immunol. Cell Biol. 93 (9), 815–824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 21-74-10 034 for the research using confocal and fluorescence microscopy) and the Russian Foundation for Basic Research (project no. 20-34-90 013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Byvalov.

Ethics declarations

The authors state that they have no conflict of interest.

This article does not describe any studies involving humans or animals as objects.

Additional information

Translated by E. Puchkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belozerov, V.S., Ananchenko, B.A., Konyshev, I.V. et al. Force Characteristics of Yersinia pestis Lipopolysaccharide Interaction with TLR4 and CD14 Receptors on J774 Macrophages: Atomic Force Microscopy. Biochem. Moscow Suppl. Ser. A 17, 200–207 (2023). https://doi.org/10.1134/S1990747823040037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747823040037

Keywords:

Navigation