Skip to main content
Log in

The Spatial and Taxonomic Structures of Microbial Communities in Dry Steppe Zone Soils of the Selenga Highlands (Western Transbaikal Region)

  • SYSTEMATIC STUDY OF ARID TERRITORIES
  • Published:
Arid Ecosystems Aims and scope Submit manuscript

Abstract

This study is concerned with soil microbial communities within the confines of the dry-steppe zone of the Selenga Highlands. The natural and climate conditions of the region, including a prolonged cold period and the low amount of precipitation and their uneven distribution throughout the growing season, govern the formation of the primarily chestnut soils of light granulometric composition, thin humic horizon, and low contents of humus and nitrogen. This work presents data on seasonal dynamics and spatial structure of microbial communities in the studied soils. The number of various ecological–trophic groups of aerobic chemoorganotrophic bacteria was found to vary between several thousand and several million CFU/g. The population parameters were the highest in second half of summer. The examined soil profiles were rather similar in their trends of spatial distribution of the culturable portion of the microbial community. The highest population parameters were recorded from humic horizons for hydrolytic bacteria and middle horizons for oligotrophic bacteria. The high-throughput sequencing method was used to perform full-profile analysis of the taxonomic structure and diversity in prokaryote communities of the light-humic and chestnut quasi-gley soils. Bacteria were dominant at a level of domains with the archaea level being insignificant. At the level of phyla, the structure of bacterial communities was largely made up of species of Actinobacteria, Acidobacteria, Proteobacteria, Bacteroidetes, Chloroflexi, Verrucomicrobia, and Gemmatimonadetes with actinobacteria and acidobacteria being dominant. Diversity indices were estimated in prokaryote communities from the genetic horizons of the studied soils. The Shannon index and Pielou evenness indices were found to be directly correlated with contents of humus and nitrogen. Assessment of the beta diversity revealed that in the analysis at the level of orders and lower taxonomic ranks, microbial communities formed two nonoverlapping clusters, which clumped humic and mineral horizons of soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Batuev, A.R., Buyantuev, A.B., and Snytko, V.A., Geosistemy i kartografirovanie ekologo-geograficheskikh situatsii priselenginskikh kotlovin Baikal’skogo regiona (Geosystems and Mapping of the Ecological and Geographical Situations of the Selenga Basins in the Baikal Region), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2000.

  2. Bayranvand, M., Akbarinia, M., Jouzan, G.S., Gharechahi, J., Kooch, Y., and Baldrian, P., Composition of soil bacterial and fungal communities in relation to vegetation composition and soil characteristics along an altitudinal gradient, FEMS Microbiol. Ecol., 2021. vol. 97, no. 1, p. fiaa201.

  3. Buyantueva, L.B., and Nikitina, E.P., Investigation of the intensity of organic matter microbial decomposition in arid steppe soils of South-Western Transbaikal by application methods, Priroda Vnutrennei Azii, 2018, no. 3, pp. 28–37.

  4. Chernov, T.I., Metagenomic analysis of prokaryotic communities of soil profiles in the European part of Russia, Extended Abstract Cand. Sci. (Biol.) Dissertation, Moscow, 2016.

  5. Chimitdorzhieva, E.O. and Chimitdorzhieva, G.D., Dynamics of carbon microbic biomass of virgin chernozems and chestnut soils of Transbaikalia, Vestnik Kostromskogo Gosudarstvennogo Universiteta im. N.A. Nekrasova, 2012, no. 3, pp. 16–20.

  6. Chimitdorzhieva, G.D., Organicheskoe veshchestvo kholodnykh pochv (Organic Matter of Cold Soils), Ulan-Ude: Buryatsk. Naucnnyi Tsentr Sib. Otd. Ross. Akad. Nauk, 2016.

  7. Chimitdorzhieva, G.D. and Tsybikova, E.V., Specific features of chestnut soils in the southern basins of Siberia, Arid Ecosyst., 2018, vol. 8, no. 4, pp. 254–259.

    Article  Google Scholar 

  8. Chirak, E.L., Pershina, E.V., Dol’nik, A.S., Kutovaya, O.V., Vasilenko, E.S., Kogut, B.M., Merzlyakova, Ya.V., and Andronov, E.E., Taxonomic structure of microbial association indifferent soils investigated by high-throughputsequencing of 16s-rRNA gene library, Sel’skokhozyaistvennaya Biologiya, 2013, vol. 48, no. 3, pp. 100–109.

    Article  Google Scholar 

  9. Cockell, C.S., Kelly, L.C., and Marteinsson, V., Actinobacteria: An ancient phylum active in volcanic rock weathering, Geomicrobiol. J., 2013. vol. 30, pp. 706–720.

    Article  CAS  Google Scholar 

  10. Dobrovol’skaya, T.G., Zvyagintsev, D.G., Chernov, I.Y., et al., The role of microorganisms in the ecological functions of soils, Eurasian Soil Sc., 2015, vol. 48, no. 9, pp. 959–967.

    Article  Google Scholar 

  11. Edgar, R.C., Search and clustering orders of magnitude faster than BLAST, Bioinformatics, 2010, vol. 26, no. 19, pp. 2460–2461.

    Article  CAS  PubMed  Google Scholar 

  12. Edgar, R.C., UPARSE: Highly accurate OTU sequences from microbial amplicon reads, Nat. Methods, 2013, vol. 10, pp. 996–998.

    Article  CAS  PubMed  Google Scholar 

  13. Edgar, R.C., Accuracy of taxonomy prediction for 16s rRNA and fungal its sequences, Peer Journal, 2018. vol. 6, p. e4652.

    Article  Google Scholar 

  14. Eilers, K.G., Debenport, S., Anderson, S., and Fierer, N., Digging deeper to find unique microbial communities: The strong effect of depth on the structure of bacterial and archaeal communities in soil, Soil Biol. Biochem., 2012, vol. 50, pp. 58–65.

    Article  CAS  Google Scholar 

  15. Fadrosh, D.W., Ma, B., Gajer, P., Sengamalay, N., Ott, S., Brotman, R.M., and Ravel, J., An improved dual-indexing approach for multiplexed 16s rRNA gene sequencing on the illumina MiSeq platform, Microbiome, 2014. vol. 2, no. 1.

  16. Fierer, N., Bradford, M.A., and Jackson, R.B., Toward an ecological classification of soil bacteria, Ecology, 2007, vol. 88, no. 6, pp. 1354–1364.

    Article  PubMed  Google Scholar 

  17. Hammer, Ø., Harper, D.A.T., and Ryan, P.D., PAST: Paleontological statistics software package for education and data analysis, Palaeontologia Electronica, 2001. vol. 4, no. 1.

  18. Hartmann, M., Howes, C.G., Van Insberghe, D., Yu, H., Bachar, D., Christen, R., Nilsson, R.H., Hallam, S., and Mohn, W., Significant and persistent impact of timber harvesting on soil microbial communities in northern coniferous forests, The ISME Journal, 2012, vol. 6, pp. 2199–2218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Holmes, A.J., Bowyer, J., Holley, M.P., O’Donoghue, M., Montgomery, M., and Gillings, M.R., Diverse, yet-to-be-cultured members of the rubrobacter subdivision of the actinobacteria are widespread in Australian arid soils, FEMS Microbiol. Ecol., 2000, vol. 33, no. 2, pp. 111–120.

    Article  CAS  PubMed  Google Scholar 

  20. Ishigenov, I.A., Agronomicheskaya kharakteristika pochv Buryatii (Agronomic Characteristics of the Soils of Buryatia), Ulan-Ude: Buryatskoe Knizhnoe Izdatel’stvo, 1972.

  21. Ivanova, E.A., Kutovaya, O.V., Tkhakakhova, A.K., et al., The structure of microbial community in aggregates of a typical chernozem aggregates under contrasting variants of its agricultural use, Eurasian Soil Sc., 2015, vol. 48, no. 11, pp. 1242–1256.

    Article  Google Scholar 

  22. Kielak, A.M., Barreto, C.C., Kowalchuk, G.A., van Veen, J.A., and Kuramae, E.E., The ecology of acidobacteria: Moving beyond genes and genomes, Front. Microbiol., 2016, vol. 7, p. 744.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Konert, M. and Vandenberghe, J.E.F., Comparison of laser grain size analysis with pipette and sieve analysis: A solution for the underestimation of the clay fraction, Sedimentology, 1997, vol. 44, no. 3, pp. 523–535.

    Article  CAS  Google Scholar 

  24. Kurapova, A.I., Zenova, G.M., Sudnitsyn, I.I., Kizilova, A.K., Manucharova, N.A., Norovsuren, Zh., and Zviagintsev, D.G., Thermotolerant and thermophilic actinomycetes from soils of Mongolia desert steppe zone, Microbiology, 2012, vol. 81, pp. 98–108.

    Article  CAS  Google Scholar 

  25. Leo, V.V., Asem, D., and Singh, B.P., Actinobacteria: A highly potent source for holocellulose degrading enzymes, in Actinobacteria: New and Future Developments in Microbial Biotechnology and Bioengineering, 2018, pp. 191–205.

  26. Li, C., Hu, H.W., Chen, Q.L., Chen, D., and He, J.Z., Comammox nitrospira play an active role in nitrification of agricultural soils amended with nitrogen fertilizers, Soil Biol. Biochem., 2019, vol. 138, p. 107609.

    Article  CAS  Google Scholar 

  27. Maron, P.A., Sarr, A., Kaisermann, A., Lévêque, J., Mathieu, O., Guigue, J., Karimi, B., Bernard, L., Dequiedt, S., Terrat, S., Chabbi, A., and Ranjard, L., High microbial diversity promotes soil ecosystem functioning, Appl. Environ. Microbiol., 2018, vol. 84, no. 9, p. e02738–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Martemyanov, V.V., Belousova, I.A., Pavlushin, S.V., Dubovskiy, I.M., Ershov, N.I., Alikina, T.Y., Kabilov, M.R., and Glupov, V.V., Phenological asynchrony between host plant and gypsy moth reduces insect gut microbiota and susceptibility to bacillus thuringiensis, Ecol. Evol., 2016, vol. 6, pp. 7298–7310.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Merkusheva, M.G., Ubugunov, L.L., and Korsunov, V.M., Bioproduktivnost’ pochv senokosov i pastbishch sukhostepnoi zony Zabaikal’ya (Soil Bioproductivity of Hayfields and Pastures in the Dry Steppe Zone of Transbaikalia), Ulan-Ude: Buryatsk. Naucnhyi Tsentr Sib. Otd. Ross. Akad. Nauk, 2006.

  30. Mohammadipanah, F. and Wink, J., Actinobacteria from arid and desert habitats: Diversity and biological activity, Front. Microbiol., 2016, vol. 6, pp. 1–10.

    Article  Google Scholar 

  31. Naether, A., Foesel, B.U., Naegele, V., Wust, P.K., Weinert, J., Bonkowski, M., Alt, F., Oelmann, Y., Polle, A., Lohaus, G., Gockel, S., Hemp, A., Kalko, E.K.V., Linsenmair, K.E., Pfeiffer, S., Renner, S., Schöning, I., Weisser, W.W., Wells, K., Fischer, M., Overmann, J., and Friedrich, M.W., Environmental factors affect acidobacterial communities below the subgroup level in grassland and forest soils, Appl. Environ. Microbiol., 2012, vol. 78, no. 20, pp. 7398–7406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. National Library of Medicine. National Center for Biotechnology Information, 2023. www.ncbi.nlm.nih.gov/bioproject/PRJNA833541. Cited February 7, 2023.

  33. Nimaeva, S.Sh., Mikrobiologiya krioaridnykh pochv (Microbiology of Cryoarid Soils), Novosibirsk: Nauka, 1992.

  34. Nogina, N.A., Pochvy Zabaikal’ya (Soils of Transbaikalia), Moscow: Nauka, 1964.

  35. Pankova, E.I. and Chernousenko, G.I., Comparison of chestnut soils of Central Asia with their analogs in other soil-geographical provinces of the dry-steppe zone of the Eurasian Subboreal Belt, Arid Ecosyst., 2018, vol. 8, no. 2, pp. 89–96.

    Article  Google Scholar 

  36. Pfennig, N., Enrichment cultures for red and green sulfur bacteria, ZentbI. Bakt. Parasitkde, 1965, vol. 1, pp. 179–189.

    Google Scholar 

  37. Pochvy Barguzinskoi kotloviny (Soils of the Barguzin Depression), Novosibirsk: Nauka, 1983.

  38. Ponomareva, V.V. and Plotnikova, T.A., Metodicheskie ukazaniya po opredeleniyu soderzhaniya i sostava gumusa v pochvakh (mineral’nykh i torfyanykh) (Guidelines for Determining the Content and Composition of Humus in Soils (Mineral and Peat)), Leningrad: Nauka, 1975.

  39. Praktikum po agrokhimii (Workshop on Agricultural Chemistry), Mineev, V.G, Ed., Moscow: Mosk. Univ., 2001.

  40. Schleper, C. and Nicol, G.W., Ammonia-oxidising archaea – Physiology, ecology and evolution, Adv. Microb. Physiol., 2010, vol. 57, pp. 1–41.

    Article  CAS  PubMed  Google Scholar 

  41. Semenov, M.V., Chernov, T.I., Tkhakakhova, A.K., Zhelezova, A.D., Ivanova, E.A., Kolganova, T.V., and Kutovaya, O.V., Distribution of prokaryotic communities throughout the chernozem profiles under different land uses for over a century, Appl. Environ. Microbiol., 2018, vol. 127, pp. 8–18.

    Google Scholar 

  42. Semenov, M.V., Manucharova, N.A., Krasnov, G.S., et al., Biomass and Taxonomic Structure of Microbial Communities in Soils of the Right-Bank Basin of the Oka River, Eurasian Soil Sc., 2019, vol. 52, no. 8, pp. 971–981.

    Article  CAS  Google Scholar 

  43. Sergaliev, N.K., Kakishev, M.G., Zhiengaliev, A.T. et al. Application of a new purification method of West-Kazakhstan chestnut soil microbiota DNA for metagenomic analysis, Eurasian Soil Sc., 2015, vol. 48, no. 4, pp. 425–431.

    Article  CAS  Google Scholar 

  44. Shishov, L.L., Tonkonogov, V.D., Lebedeva, I.I., and Gerasimova, M.I., Klassifikatsiya i diagnostika pochv Rossii (Classification and Diagnostics of Russian Soils), Smolensk: Oikumena, 2004.

  45. Titova, V.I. and Kozlov, A.V., Metody otsenki funktsionirovaniya mikrobotsenoza pochvy, uchastvuyushchego v transformatsii organicheskogo veshchestva: nauchno-metodicheskoe posobie (Methods for Assessing the Functioning of Soil Microbiocenosis Involved in the Transformation of Organic Matter: Instructional Guide), Nizhnii Novgorod, 2012.

  46. Tsybzhitov, Ts.Kh., Tsybikdorzhiev, Ts.Ts., and Tsybzhitov, A.Ts., Genezis, geografiya i klassifikatsiya kashtanovykh pochv (Genesis, Geography and Classification of Chestnut Soils), Novosibirsk: Nauka, 1999, vol. 1.

  47. Ubugunov, L.L., Lavrent’eva, I.N., Ubugunova, V.I., and Merkusheva, M.G., Raznoobrazie pochv Ivolginskoi kotloviny: ekologo-agrokhimicheskie aspekty (Soil Diversity in the Ivolginskaya Hollow: Ecological and Agrochemical Aspects), Ulan-Ude: Buryatsk. Gos. S.-Kh. Akad., 2000.

  48. Ubugunov, L.L., Gyninova, A.B., Belozertseva, I.A., Ubugunov, V.L., Dorzhgotov, D., Sorokovoi, A.A., Ubugunova, V.I., Badmaev, N.B., Balsanova, L.D., Gonchikov, B.N., and Tsybikdorzhiev, Ts.Ts., Variety and spatial structure of soils of the lake Baikal basin, Uspekhi Sovremennogo Estestvoznaniya, 2018, no, 5, pp. 142–151.

  49. Wang, C., Dong, D., Wang, H., Muller, K., Qin, Y., Wang, H., and Wu, W., Metagenomic analysis of microbial consortia enriched from compost: New insights into the role of actinobacteria in lignocellulose decomposition, Biotechnol. Biofuels, 2016, vol. 9, p. 22.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wang, Q., Garrity, G.M., Tiedje, J.M., and Cole, J.R., Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy, Appl. Environ. Microbiol., 2007, vol. 73, no. 16, pp. 5261–5267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yao, F., Yang, S., Wang, Z., Wang, X., Ye, J., Wang, X., De Bruyn, J.M., Feng, X., Jiang, Y., and Li, H., Microbial taxa distribution is associated with ecological trophic cascades along an elevation gradient, Front. Microbiol., 2017, vol. 8, p. 2071.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zenova, G.M., Zvyagintsev, D.G., and Sudnitsyn, I.I., Razvitie aktinomitsetov pri nizkoi vlazhnosti okruzhayushchei sredy (Development of Actinomycetes at Low Environmental Humidity), Moscow: Universitetskaya Kniga, 2014.

  53. Zvyagintsev, D.G., Dobrovol’skaya, T.G., Chernov, I.Yu., Sardanashvili, E.S., Gonchikov, G.G., and Korsu-nov, V.M., Taxonomic composition of microbial complexes in the soils of the Baikal region, Pochvovedenie, 1999a, no. 6, pp. 727–731.

  54. Zvyagintsev, D.G., Polyanskaya, L.M., Gonchikov, G.G., and Korsunov, V.M., Biomass of microorganisms in the soils of Transbaikalia, Pochvovedenie, 1999b, no. 9, pp. 1132–1139.

  55. Zvyagintsev, D.G., Bab’eva, I.P., and Zenova, G.M., Biologiya pochv (Biology of Soils), Moscow: Mosk. Gos. Univ., 2005.

Download references

Funding

This work was supported as a part of the State Assignment of the Institute of General and Experimental Biology of the Siberian Branch, Russian Academy of Sciences, Microbial Communities of the Extreme Natural Ecosystems of Baikal Region: Structural and Functional Organization and Biotechnological Potential, project no. 121030100229-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Nikitina.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by E. Kuznetsova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitina, E.P., Buyantueva, L.B., Baturina, O.A. et al. The Spatial and Taxonomic Structures of Microbial Communities in Dry Steppe Zone Soils of the Selenga Highlands (Western Transbaikal Region). Arid Ecosyst 13, 331–341 (2023). https://doi.org/10.1134/S2079096123030083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079096123030083

Keywords:

Navigation