Skip to main content
Log in

Cluster Self-Organization of Intermetallic Systems: K3, K4, K5, K6, and K13 Clusters-Precursors for the Self-Assembly of U8Ni10Al36-mC54, U20Ni26-mC46, and U8Co8-cI16 Crystal Structures

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Using computer methods (the ToposPro software package), a combinatorial topological analysis and modeling of the self-assembly of U8Ni10Al36-mC54 (a = 15.5470 Å, b = 4.0610 Å, c = 16.4580 Å, β = 120.00°, V = 899.89 Å3, C m), U20Ni26-mC46 (a = 7.660 Å, b = 13.080 Å, c = 7.649 Å, β = 108.88°, V = 725.26 Å3, C2/m), and U8Co8-cI16 (a = 6.343 Å, V = 255.20 Å3, I 213) are carried out. For the U8Ni10Al36-mC54 crystal structure, 960 variants of the cluster representation of the 3D atomic grid with the number of structural units 5, 6, and 7 are established. Six crystallographically independent structural units in the form of a pyramid K5 = 0@Al(U2Al2), pyramid K6A = 0@U(NiAl4), and pyramid K6B = 0@U(NiAl4), as well as rings K3A = 0@NiAl2, K3B = 0@NiAl2, and K3C = 0@Al3, are determined. For the U20Ni26-mC46 crystal structure, the structural units K5 = Ni(Ni2U2) and icosahedra K13= Ni@Ni6U6 are defined. For the crystal structure U2Co2-cI16, the structural units—tetrahedra K4 = U2Co2—are defined. The symmetry and topological code of the processes of self-assembly of 3D structures from clusters-precursors are reconstructed in the following form: primary chain → layer → framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Inorganic Crystal Structure Database (ICSD), Karlsruhe: Fachinformationszentrum, USA: Natl. Inst. Stand. Technol.

  2. Villars, P. and Cenzual, K., Pearson’s Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC), Materials Park, OH: ASM Int.

  3. Perricone, A. and Noel, H., Crystal structure refinements and magnetic behavior of U6Ni, UNi5, UNi2 and the substitution derivative UNi1.7Si0.3, Chem. Met. Alloys, 2008, vol. 1, pp. 54–57.

    Article  Google Scholar 

  4. Perricone, A. and Noel, H., Crystal structure and magnetic properties of the binary uranium–nickel alloy UNi4, Intermetallics, 2002, vol. 10, pp. 519–521.

    Article  CAS  Google Scholar 

  5. Perricone, A. and Noel, H., Characterization of the new uranium–nickel alloy and U10Ni13, J. Nucl. Mater., 2001, vol. 299, pp. 260–263.

    Article  CAS  Google Scholar 

  6. Perricone, A., Potel, M., and Noel, H., Crystal structure and magnetic properties of the binary uranium–nickel alloy U11 and Ni16, J. Alloys Compd., 2002, vol. 340, pp. 39–42.

    Article  CAS  Google Scholar 

  7. Grin, Y.N., Rogl, P., Akselrud, L.G., and Pertlik, F., X-ray studies in the systems ZrNi5–xOx and UNi5–xAlx, Z. Kristallogr., 1989, vol. 188, pp. 271–277.

    Article  CAS  Google Scholar 

  8. Dwight, A.E., The unit-cell constants of some PuNi3-type compounds, Acta Crystallogr., Sect. B, 1968, vol. 24, pp. 1395–1396.

    Article  CAS  Google Scholar 

  9. Dommann, A., Brandle, H., Hulliger, F., and Fischer, P., Crystal structure and magnetic order of and UCo5, J. Less-Common Met., 1990, vol. 158, pp. 287–294.

    Article  CAS  Google Scholar 

  10. Baenziger, N.C., Rundle, R.E., Snow, A.I., and Wilson, A.S., Compounds of uranium with the transition metals of the first long period, Acta Crystallogr., 1950, vol. 3, pp. 34–40.

    Article  CAS  Google Scholar 

  11. Kimball, C.W., Vaishnava, P.P., and Dwight, A.E., Phonon anomalies and local atomic displacements in the exchange-enhanced superconductor U6Fe, Phys. Rev. B, 1985, vol. 32, pp. 4419–4425.

    Article  CAS  Google Scholar 

  12. Lebech, B., Wulff, M., Lander, G.H., Rebizant, J., Spirlet, J.C., and Delapalme, A., Neutron diffraction studies of the crystalline and magnetic properties of UFe2, J. Phys.: Condens. Matter, 1989, vol. 1, pp. 10229–10248.

    CAS  Google Scholar 

  13. Lawson, A.C., Jr., Smith, J.L., Willis, J.O., O’Rourke, J.A., Faber, J., and Hitterman, R.L., Orthorhombic structure of UMn2 at low and temperatures, J. Less-Common Met., 1985, vol. 107, pp. 243–248.

    Article  CAS  Google Scholar 

  14. Richter, C.G., Jeitschko, W., Kuennen, B., and Gerdes, M.H., The ternary titanium transition metal bismuthides Ti4TBi2 with T = Cr, Mn, Fe, Co and Ni, J. Solid State Chem., 1997, vol. 133, pp. 400–406.

    Article  CAS  Google Scholar 

  15. Bauer, E.D., Sidorov, V.A., Bobev, S., Mixson, D.J., Thompson, J.D., Sarrao, J.L., and Hundley, M.F., High-pressure investigation of the heavy-fermion antiferromagnet U3Ni5Al19, Phys. Rev. B, 2005, vol. 71, p. 014419.

  16. Shevchenko, V.Ya., Ilyushin, G.D., and Blatov, V.A., Cluster self-organization of intermetallic systems: New two-layer nanocluster-precursor K44 = 0@8(U2Ni6) @ 36(U12Ni24) in the crystal structure U66Ni96-hR162, Glass Phys. Chem., 2021, vol. 47, pp. 525–532.

    Article  CAS  Google Scholar 

  17. Ilyushin, G.D., Theory of cluster self-organization of crystal-forming systems. Geometrical-topological modeling of nanocluster precursors with a hierarchical structure, Struct. Chem., 2012, vol. 20, no. 6, pp. 975–1043.

    Google Scholar 

  18. Shevchenko, V.Ya., Medrish, I.V., Ilyushin, G.D., and Blatov, V.A., From clusters to crystals: Scale chemistry of intermetallics, Struct. Chem., 2019, vol. 30, pp. 2015–2027.

    Article  CAS  Google Scholar 

  19. Ilyushin, G.D., Intermetallic compounds KnMm (M = Ag, Au, As, Sb, Bi, Ge, Sn, Pb): Geometrical and topological analysis, cluster precursors, and self-assembly of crystal structures, Crystallogr. Rep., 2020, vol. 65, no. 7, pp. 1095–1105.

    Article  CAS  Google Scholar 

  20. Ilyushin, G.D., Intermetallic compounds NakMn (M = K, Cs, Ba, Ag, Pt, Au, Zn, Bi, Sb): Geometrical and topological analysis, cluster precursors, and self-assembly of crystal structures, Crystallogr. Rep., 2020, vol. 65, no. 4, pp. 539–545.

    Article  CAS  Google Scholar 

  21. Blatov, V.A., Shevchenko, A.P., and Proserpio, D.M., Applied topological analysis of crystal structures with the program package ToposPro, Cryst. Growth Des., 2014, vol. 14, no. 7, pp. 3576–3585.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Ya. Shevchenko or G. D. Ilyushin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevchenko, V.Y., Ilyushin, G.D. Cluster Self-Organization of Intermetallic Systems: K3, K4, K5, K6, and K13 Clusters-Precursors for the Self-Assembly of U8Ni10Al36-mC54, U20Ni26-mC46, and U8Co8-cI16 Crystal Structures. Glass Phys Chem 49, 327–335 (2023). https://doi.org/10.1134/S1087659623600321

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659623600321

Keywords:

Navigation