Skip to main content
Log in

Johnson–Holmquist Model Parameter Determination for Tempered Glass under Impact Loading

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract—

Tempered glass is a transparent material that can withstand various shocks and constant loads, which is widely used in the field of safety protection. This manuscript presents the determination of Johnson–Holmquist (JH-2) model parameters for tempered glass and investigates the effect of strain rate on its strength through quasi-static and dynamic compression tests. The hydrostatic tensile pressure was indirectly determined via split tensile tests, and literature data were employed to calculate the value of HEL and EOS. The JH-2 model accurately predicted the real shapes of strain waves in the input and output bar of SHPB tests and was capable of describing the mechanical behavior of the brittle material from elasticity to fracture. The determined parameters for tempered glass were validated to represent the response to shock and impact loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. Balan, B.A. and Achintha, M., Assessment of stresses in float and tempered glass using eigenstrains, Exp. Mech., 2015, vol. 55, no. 7, pp. 1301–1315.

    Article  Google Scholar 

  2. Bernard, F., Gy, R., and Daudeville, L., Finite element computation of residual stresses near holes in tempered glass plates, in Proceedings of the 19th International Congress on Glass, 2001, pp. 290–295.

  3. To, Q.-D., He, Q.-C., and Cossavella, M., The tempering of glass and the failure of tempered glass plates with pin-loaded joints: Modelling and simulation, Mater. Des., 2008, vol. 29, no. 5, pp. 943–951.

    Article  CAS  Google Scholar 

  4. Zhou, H., Xi, G., and Li, D., Modeling and simulation of residual stresses during glass bulb pressing process, Technol. Sci., 2007, vol. 50, no. 1, pp. 103–117.

    Google Scholar 

  5. Nielsen, J.H., Olesen, J.F., and Poulsen, P.N., Simulation of residual stresses at holes in tempered glass: A parametric study, Mater. Struct., 2010, vol. 43, no. 7, pp. 947–961.

    Article  Google Scholar 

  6. Kim, J.H., Kong, J., and Chung, K., Analysis of annealing processes of glass sheets based on structural relaxation model, Int. J. Mech. Sci., 2013, vol. 66, p. 249–259.

    Article  Google Scholar 

  7. Béchet, F., Siedow, N., and Lochegnies, D., Two-dimensional finite element modeling of glass forming and tempering processes, including radiative effects, Finite Elem. Anal. Des., 2015, vol. 94, pp. 16–23.

    Article  Google Scholar 

  8. Ma, Y., Wu, N., and Zhang, H., Thermal annealing system and process design to improve quality of large size glasses, Int. J. Heat Mass Transfer, 2014, vol. 72, pp. 411–422.

    Article  Google Scholar 

  9. Biolzi, L., Cattaneo, S., and Rosati, G., Progressive damage and fracture of laminated glass beams, Construct. Build. Mater., 2010, vol. 24, no. 4, pp. 577–584.

    Article  Google Scholar 

  10. Du Bois, P.A., Kolling, S., and Fassnacht, W., Modelling of safety glass for crash simulation, Comput. Mater. Sci., 2003, vol. 28, nos. 3–4, pp. 675–683.

    Article  Google Scholar 

  11. Holmquist, T.J., Johnson, G.R., and Lopatin, C.M., High strain rate properties and constitutive modeling of glass online, Paper SAND-95-0379C, CONF-950537-2, Albuquerque, NM: Sandia Natl. Lab., 1995.

    Book  Google Scholar 

  12. Wu, C.D., Yan, X.Q., and Shen, L.M., A numerical study on dynamic failure of nanomaterial enhanced laminated glass under impact, IOP Conf. Ser.: Mater. Sci. Eng., 2010, vol. 10, p. 012176.

  13. Grujicic, M., Bell, W.C., and Pandurangan, B., The effect of high-pressure densification on ballistic-penetration resistance of a soda-lime glass, Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl., 2011, vol. 225, no. 4, pp. 298–315.

    CAS  Google Scholar 

  14. Anderson, C.E., Jr. and Holmquist, T.J., Application of a computational glass model to compute propagation of failure from ballistic impact of borosilicate glass targets, Int. J. Impact Eng., 2013, vol. 56, pp. 2–11.

    Article  Google Scholar 

  15. Nam, J., Kim, T., and Cho, S.W., A numerical cutting model for brittle materials using smooth particle hydrodynamics, Int. J. Adv. Manuf. Technol., 2016, vol. 82, nos. 1–4, pp. 133–141.

    Article  Google Scholar 

  16. Zhang, X., Hao, H., and Ma, G., Dynamic material model of annealed soda-lime glass, Int. J. Impact Eng., 2015, vol. 77, pp. 108–119.

    Article  Google Scholar 

  17. Anderson, C.E., Jr., Ballistic experiment and computations of confined 99.5% Al2O3 ceramic tiles, in Proceedings of the 15th International Symposium on Ballistics, 1995.

  18. Holmquist, T.J., Templeton, D.W., and Bishnoi, K.D., Constitutive modeling of aluminum nitride for large strain, high-strain rate, and high-pressure applications, Int. J. Impact Eng., 2001, vol. 25, no. 3, pp. 211–231.

    Article  Google Scholar 

  19. Holmquist, T.J. and Johnson, G.R., Characterization and evaluation of silicon carbide for high-velocity and impact, J. Appl. Phys., 2005, vol. 97, no. 9, p. 093502.

    Article  Google Scholar 

  20. Claesson, J. and Bohloli, B., Brazilian test: Stress field and tensile strength of anisotropic rocks using an analytical solution, Int. J. Rock Mech. Mining Sci., 2002, vol. 39, no. 8, pp. 991–1004.

    Article  Google Scholar 

  21. Li, D. and Wong, L.N.Y., The brazilian disc test for rock mechanics applications: Review and new insights, Rock Mech. Rock Eng., 2013, vol. 46, no. 2, pp. 269–287.

    Article  Google Scholar 

  22. Rocco, C., Guinea, G.V., and Planas, J., Size effect and boundary conditions in the brazilian test: Experimental verification, Mater. Struct., 1999, vol. 32, no. 3, pp. 210–217.

    Article  Google Scholar 

  23. Gama, B.A., Lopatnikov, S.L., and Gillespie, J.W., Jr., Hopkinson bar experimental technique: A critical review, Appl. Mech. Rev., 2004, vol. 57, no. 4, pp. 223–250.

    Article  Google Scholar 

  24. Alexander, C.S., Chhabildas, L.C., and Reinhart, W.D., Changes to the shock response of fused quartz due to glass modification, Int. J. Impact Eng., 2008, vol. 35, no. 12, pp. 1376–1385.

    Article  Google Scholar 

  25. Alexander, C.S., Chhabildas, L.C., and Templeton, D.W., The Hugoniot elastic limit of soda-lime glass, AIP Conf. Proc., 2007, vol. 955, p. 733–738.

    CAS  Google Scholar 

  26. Marsh, S.P., Lasl Shock Hugoniot Data, California: Univ. California Press, 1980.

    Google Scholar 

  27. Rosenberg, Z., Yaziv, D., and Bless, S., Spall strength of shock-loaded and glass, J. Appl. Phys., 1985, vol. 58, no. 8, pp. 3249–3251.

    Article  CAS  Google Scholar 

  28. Grady, D.E. and Chhabildas, L.C., Shock-Wave Properties of Soda-Lime Glass, Albuquerque, NM: Sandia Natl. Labs., 1996.

    Google Scholar 

  29. Bourne, N.K. and Rosenberg, Z., The ramping of shock waves in three glasses, Proc. R. Soc. London, Ser. A, 1996, vol. 452, no. 1949, pp. 1491–1496.

  30. Dandekar, D.P., Index of refraction and mechanical behavior of soda lime glass under shock and release wave and propagations, J. Appl. Phys., 1998, vol. 84, no. 12, pp. 6614–6622.

    Article  CAS  Google Scholar 

  31. Wenqi, H., Yuan, C., and Zhiang, H., General specifications of forced entry resistant glass, GA Paper No. 844-2009, 2009.

  32. Walley, S.M. and Field, J.E., Strain rate sensitivity of polymers in compression from low to high rates, DYMAT J., 1994, vol. 1, no. 3, pp. 211–227.

    Google Scholar 

  33. Toqueboeuf, W., Mortaigne, B., and Cottenot, C., Dynamic behaviour of polycarbonate/polyurethane multi-layer for transparent and armor, J. Phys. IV, 1997, vol. 7, no. C3, p. 499.

    Google Scholar 

Download references

Funding

This work was supported by the Key Program for International Scientific and Technological Cooperation Projects of China (project no. 2014DFB50100) and the National Natural Science Foundation of China (project no. 11702031).

Author information

Authors and Affiliations

Authors

Contributions

Wenyu CHENG: Conceptualization, Methodology, Software, Formal analysis, Investigation, Writing – original draft. Xiaomian HU: Validation, Investigation, Writing – review & editing, Supervision, Project administration, Funding acquisition. Hao PAN: Validation, Investigation, Writing – review & editing, Supervision.

Corresponding author

Correspondence to Wenyu Cheng.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wenyu Cheng, Hu, X. & Pan, H. Johnson–Holmquist Model Parameter Determination for Tempered Glass under Impact Loading. Glass Phys Chem 49, 340–353 (2023). https://doi.org/10.1134/S1087659622600193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659622600193

Keywords:

Navigation