Skip to main content
Log in

Self-Consistent Set of Lennard–Jones Potential Parameters for Molecular Dynamics Simulations of Oxide Materials

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

A forcefield for high-performance molecular dynamics (MD) simulation of inorganic oxide substances, including borosilicate glasses, based on a combination of electrostatic interactions with the 6–12 type of Lennard–Jones potentials is developed. The forcefield parameters are selected to reproduce the structures and bulk moduli of the binary oxides of a wide spectrum of elements. The proposed forcefield is able to accurate reproduce structures of minerals containing two to three types of cations during the MD simulations. Application of the 6–12 potential makes it possible to carry out simultaneous MD simulations of the organic and inorganic phases, for example, in modeling composite materials with mineral and glass fillers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Ma, M., Li, H., Xiong, Y., and Dong, F., Rational design, synthesis, and application of silica/graphene-based nanocomposite: A review, Mater. Des., 2021, vol. 198, p. 109367.

    Article  CAS  Google Scholar 

  2. Van Beest, B.W.H., Kramer, G.J., and van Santen, R.A., Force fields for silicas and aluminophosphates based on ab initio calculations, Phys. Rev. Lett., 1990, vol. 64, pp. 1955–1958.

    Article  CAS  Google Scholar 

  3. Hu, Y.-J., Zhao, G., Zhang, M., Bin, B., Del Rose, T., Zhao, Q., Zu, Q., Chen, Y., Sun, X., de Jong, M., and Qi, L., Predicting densities and elastic moduli of SiO2-based glasses by machine learning, npj Comput. Mater., 2020, vol. 6, p. 25.

    Google Scholar 

  4. Goodman, B.J., A study of vitrified nuclear wasteforms by molecular dynamics, electron microscopy and Raman spectroscopy, Master Thesis, Kent: Univ. Kent, 2015.

  5. Pedone, A., Malavasi, G., Menziani, M.C., Cormack, A.N., and Segre, U., A new self-consistent empirical interatomic potential model for oxides, silicates, and silica-based and glasses, J. Phys. Chem. B, 2006, vol. 110, pp. 11780–11795.

    Article  CAS  Google Scholar 

  6. Mishnev, M., Korolev, A., Bartashevich, E., and Ulrikh, D., Effect of long-term thermal relaxation of epoxy binder on thermoelasticity of fiberglass plastics: Multiscale modeling and experiments, Polymers, 2022, vol. 14, p. 1712.

    Article  CAS  Google Scholar 

  7. Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., and Case, D.A., Development and testing of a general amber force and field, J. Comput. Chem., 2004, vol. 25, pp. 1157–1174.

    Article  CAS  Google Scholar 

  8. Soares, T.A., Hunenberger, P.H., Kastenholz, M.A., Kräutler, V., Lenz, T., Lins, R.D., Oostenbrink, C., and van Gunsteren, W.F., An improved nucleic acid parameter set for the GROMOS force and field, J. Comput. Chem., 2005, vol. 26, pp. 725–737.

    Article  CAS  Google Scholar 

  9. Vanommeslaeghe, K., Raman, E.P., and Mackerell, A.D., Jr., Automation of the CHARMM general force field (CGenFF) II: Assignment of bonded parameters and partial atomic and charges, J. Chem. Inf. Model., 2012, vol. 52, pp. 3155–3168.

    Article  CAS  Google Scholar 

  10. Wennberg, C.L., Murtola, T., Hess, B., and Lindahl, E., Lennard–Jones lattice summation in bilayer simulations has critical effects on surface tension and lipid and properties, J. Chem. Theory Comput., 2013, vol. 9, pp. 3527–3537.

    Article  CAS  Google Scholar 

  11. Heinz, H., Lin, T.-J., Mishra, R.K., and Emami, F.S., Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: The INTERFACE force field, Langmuir, 2013, vol. 29, pp. 1754–1765.

    Article  CAS  Google Scholar 

  12. Tsuneyuki, S., Tsukada, M., Aoki, H., and Matsui, Y., First-principles interatomic potential of silica applied to molecular dynamics, Phys. Rev. Lett., 1988, vol. 61, pp. 869–872.

    Article  CAS  Google Scholar 

  13. Vaitkus, A., Merkys, A., and Grazulis, S., Validation of the crystallography open database using the crystallographic information and framework, J. Appl. Crystallogr., 2021, vol. 54, pp. 661–672.

    Article  CAS  Google Scholar 

  14. Smyth, J.R., Jacobsen, S.D., and Hazen, R.M., Comparative crystal chemistry of dense oxide minerals, Rev. Mineral. Geochem., 2000, vol. 41, pp. 157–186.

    Article  Google Scholar 

  15. Gale, J.D. and Rohl, A.L., The general utility lattice program (GULP), Mol. Simul., 2003, vol. 29, pp. 291–341.

    Article  CAS  Google Scholar 

  16. Abraham, M., Murtola, T., Schulz, R., Páll, S., Smith, J., Hess, B., and Lindahl, E., GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX, 2015, vols. 1–2, pp. 19–25.

    Article  Google Scholar 

  17. Bussi, G., Donadio, D., and Parrinello, M., Canonical sampling through velocity and rescaling, J. Chem. Phys., 2007, vol. 126, p. 014101.

    Article  Google Scholar 

  18. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., Di Nola, A., and Haak, J.R., Molecular dynamics with coupling to an external and bath, J. Chem. Phys., 1984, vol. 81, pp. 3684–3690.

    Article  CAS  Google Scholar 

  19. Gatta Diego, G., Angel, R.J., Rotiroti, N., and Carpenter, M.A., High-pressure and low-temperature behaviour of trigonal kalsilite, Geophys. Res. Abstr., 2010, vol. 12, pp. EGU2010–12321.

    Google Scholar 

  20. Darden, T., York, D., and Pedersen, L., Particle mesh Ewald: An N-log(N) method for Ewald sums in large and systems, J. Chem. Phys., 1993, vol. 98, pp. 10089–10092.

    Article  CAS  Google Scholar 

  21. Wennberg, C.L., Murtola, T., Hess, B., and Lindahl, E., Lennard–Jones lattice summation in bilayer simulations has critical effects on surface tension and lipid and properties, J. Chem. Theory Comput., 2013, vol. 9, pp. 3527–3537.

    Article  CAS  Google Scholar 

  22. Shelby, J.E., Introduction to Glass Science and Technology, London: R. Soc. Chem., 2007.

    Google Scholar 

  23. Lipinska-Kalita, K.E., Kalita, P., Hemmers, O., and Hartmann, T., Equation of state of gallium oxide to 70 GPa: Comparison of quasihydrostatic and nonhydrostatic compression, Phys. Rev. B, 2008, vol. 77, p. 094123.

    Article  Google Scholar 

  24. Barzilai, S., Halevy, I., and Yeheskel, O., Bulk modulus of Sc2O3: Ab initio calculations and experimental and results, J. Appl. Phys., 2011, vol. 110, p. 043532.

    Article  Google Scholar 

  25. Palko, J.W., Waltraud, W.M., Sinogeikin, S.V., Bass, J.D., and Sayir, A., Elastic constants of yttria (Y2O3) monocrystals to high and temperatures, J. Appl. Phys., 2001, vol. 89, pp. 7791–7796.

    Article  CAS  Google Scholar 

  26. Materials Data on Na 2 SiO 3 by Materials Project, LBNL Mater. Project, Berkeley, CA: Lawrence Berkeley Natl. Labor., 2020.

  27. Bass, J.D., Elasticity of minerals, glasses, and melts, in Mineral Physics and Crystallography: A Handbook of Physical Constants, Ahrens, T.J., Ed., Washington: Am. Geophys. Union, 1995, pp. 45–63.

    Google Scholar 

Download references

Funding

This study was supported by the RF Ministry of Science and Higher Education, grant no. FENU 2020-0019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Makarov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, G.I., Shilkova, K.S., Shunailov, A.V. et al. Self-Consistent Set of Lennard–Jones Potential Parameters for Molecular Dynamics Simulations of Oxide Materials. Glass Phys Chem 49, 354–363 (2023). https://doi.org/10.1134/S1087659622600995

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659622600995

Keywords:

Navigation