Skip to main content
Log in

Effect of Disorder in the Structure of a Ferroelectric Composite Material xPbSe·(1 – x)PbSeO3 on the Smearing of the Phase Transition

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

This paper analyzes the experimental and theoretical studies of the problem of a diffuse phase transition (PTC) in a composite material xPbSe⋅(1 – x)PbSeO3, in which x varies from 0 to 1. The decrease in stability in the virtual cubic phase of lead selenide (PbSe) is achieved by oxidizing it with atmospheric oxygen and forming a ferroelectric disordered monoclinic phase of lead selenite (PbSeO3). The mechanism of lead selenide oxidation by air oxygen is studied by X-ray diffractometry, optical reflection in the infrared region of the spectrum, X-ray emission analysis (the chemical shift method), nuclear magnetic resonance, studies of AC and DC conductivity, differential scanning calorimetry, and other methods. The reason for the smearing of the phase transition in the xPbSe⋅(1 – x)PbSeO3 composite, in which x varies from 0 to 1, is analyzed based on the previously obtained experimental results of its detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Zhang, S., High entropy design: A new pathway to promote the piezoelectricity and dielectric energy storage in perovskite oxides, Microstructures, 2023, vol. 3, p. 2023003.

    Google Scholar 

  2. Ding, W., Lu, J., Tang, X., Kou, L., and Liu, L., Ferroelectric materials and their applications in activation of small molecules, ACS Omega, 2023, vol. 8, no. 7, pp. 6164–6174.

    Article  CAS  Google Scholar 

  3. Mikolajick, T., Slesazeck, S., Mulaosmanovic, H., Park, M.H., Fichtner, S., Lomenzo, P.D., Hoffmann, M., and Schroeder, U., Next generation ferroelectric materials for semiconductor process integration and their and applications, J. Appl. Phys., 2021, vol. 129, no. 11, p. 100901.

    Article  CAS  Google Scholar 

  4. Mustafaev, A.S., Yarygin, V.I., Soukhomlinov, V.S., Tsyganov, A.B., and Kaganovich, I.D., Nano-size effects in graphite/graphene structure exposed to cesium and vapor, J. Appl. Phys., 2018, vol. 124, no. 12, p. 123304.

  5. Sukhomlinov, V.S., Mustafaev, A.S., Koubaji, H., Timofeev, N.A., and Murillo, O., Kinetic theory of instability in the interaction of an electron beam and plasma with an arbitrary anisotropic electron velocity distribution function, New J. Phys., 2021, vol. 23, no. 12, p. 123044.

  6. Sukhomlinov, V.S., Mustafaev, A.S., Zaitsev, A., and Timofeev, V.A., Influence of beam and plasma noise on the instability of the “Fast electron beam–confined collisional plasma” system. Kinetic and consideration, J. Phys. Soc. Jpn., 2022, vol. 2, no. 91, p. 024501.

  7. Egorova, A.Yu., Lomakina, E.S., and Popova, A.N., Determination of the composition of chalcogenid glasses AsxSe1 –x by the method of X-ray fluorescent analysis, J. Phys.: Conf. Ser., 2019, vol. 1384, p. 012009.

    CAS  Google Scholar 

  8. Kuroiwa, Y., Kim, S., Fujii, I., Ueno, S., Nakahira, Y., Moriyoshi, C., Sato, Y., and Wada, S., Piezoelectricity in perovskite-type pseudo-cubic ferroelectrics by partial ordering of off-centered cations, Commun. Mater., 2020, vol. 1, p. 71.

  9. Ivanov, S.A., Stash, A.I., Riekehr, L., Chen, Y.S., and Ye, Z.G., Structure of Pb(Fe2/3W1/3)O3 single crystals with partial cation order, Sci. Rep., 2020, vol. 10, no. 1, p. 14567.

  10. Hou, Y., Wu, C., Yang, D., Ye, T., Honavar, V.G., van Duin, A.C.T., Wang, K., and Priya, S., Two-dimensional hybrid organic–inorganic perovskites as emergent ferroelectric and materials, J. Appl. Phys., 2020, vol. 128, no. 6, p. 060906.

  11. Celano, U., Gomez, A., Piedimonte, P., Neumayer, S., Collins, L., Popovici, M., Florent, K., McMitchell, S.R.C., Favia, P., Drijbooms, Ch., Bender, H., Paredis, K., Di Piazza, L., Jesse, S., Houdt, J.V., and van der Heide, P., Ferroelectricity in Si-doped hafnia: Probing challenges in absence of screening charges, Nanomaterials, 2020, vol. 10, no. 8, p. 1576.

  12. Kvyatkovskii, O.E., Point defects in ferroelectrics with perovskite structure, Bull. Russ. Acad. Sci.: Phys., 2010, vol. 74, no. 9, pp. 1190–1197.

    Article  Google Scholar 

  13. Tyunina, M., Oxygen vacancies in perovskite oxide piezoelectrics, Materials, 2020, vol. 13, no. 24, p. 5596.

  14. Xu, L., Wang, Z., Su, B., Wang, C., Yang, X., Su, R., Long, X., and He, C., Origin of structural change driven by A-site lanthanide doping in ABO3-type perovskite ferroelectrics, Crystals, 2020, vol. 10, no. 6, p. 434.

  15. Setter, N., Damjanovic, D., Eng, L., Fox, G., Gevorgian, S., Hong, S., Kingon, A., Kohlstedt, H., Park, N.Y., Stephenson, G.B., Stolitchnov, I., Taganstev, A.K., Taylor, D.V., Yamada, T., and Streiffer, S., Ferroelectric thin films: Review of materials, properties, and applications, J. Appl. Phys., 2006, vol. 100, no. 5, p. 051606.

  16. Smidt, T.E., Mack, S.A., Reyes-Lillo, S.E., Jain, A., and Neaton, J.B., An automatically curated first-principles database of ferroelectrics, Sci. Data, 2020, vol. 7, no. 1, p. 72.

  17. Mozetič, M., Surface modification to improve properties of materials, Materials, 2019, vol. 12, no. 3, p. 441.

  18. Acharya, M., Mack, S., Fernandez, A., Kim, J., Wang, H., Eriguchi, K., Meyers, D., Gopalan, V., Neaton, J., and Martin, L.W., Searching for new ferroelectric materials using high-throughput databases: An experimental perspective on BiAlO3 and BiInO3, Chem. Mater., 2020, vol. 32, pp. 7274–7283.

    Article  CAS  Google Scholar 

  19. Tomaev, V.V., Ferroelectric phase transition in the PbSe + PbSeO3 composite, Glass Phys. Chem., 2009, vol. 35, no. 6, pp. 660–667.

    Article  CAS  Google Scholar 

  20. Si, M., Saha, A.K., Gao, S., Qiu, G., Qin, J., Duan, Y., Jian, J., Niu, C., Wang, H., Wu, W., Gupta, S.K., and Ye, P.D., A ferroelectric semiconductor field-effect transistor, Nat. Electron., 2019, vol. 2, pp. 580–586.

    Article  CAS  Google Scholar 

  21. Damjanovic, D., Murat, P., and Setter, N., Ferroelectric sensors, IEE Sens. J., 2001, vol. 1, no. 3, pp. 191–206.

    Article  CAS  Google Scholar 

  22. Kim, J.Y., Choi, M.-J., and Jang, H.W., Ferroelectric field effect transistors: Progress and perspective, APL Mater., 2021, vol. 9, no. 2, p. 021102.

  23. Mikolajick, T., Slesazeck, S., Mulaosmanovic, H., Park, M.H., Fichtner, S., Lomenzo, P.D., Hoffmann, M., and Schroeder, U., Next generation ferroelectric materials for semiconductor process integration and their and applications, J. Appl. Phys., 2021, vol. 129, no. 10, p. 100901.

  24. Jiang, Y., Zhou, M., Shen, Z., Zhang, X., Pan, H., and Lin, Y.-H., Ferroelectric polymers and their nanocomposites for dielectric energy storage applications, APL Mater., 2021, vol. 9, no. 2, p. 020905.

  25. Hoshino, S., Shimaoka, S., and Niimura, K., Ferroelectricity in solid hydrogen halides, Phys. Rev. Lett., 1967, vol. 19, pp. 1286–1288.

    Article  CAS  Google Scholar 

  26. Cochran, W., Crystal stability and the theory of ferroelectricity, Phys. Rev. Lett., 1959, vol. 3, p. 412.

    Article  CAS  Google Scholar 

  27. Cochran, W., Crystal stability and the theory of ferroelectricity, Adv. Phys., 1960, vol. 9, p. 387.

    Article  CAS  Google Scholar 

  28. Cochran, W., Crystal stability and the theory of ferroelectricity. Part II. Piezoelectric crystals, Adv. Phys., 1961, vol. 10, p. 401.

    Article  CAS  Google Scholar 

  29. Ravich, Yu.I., Efimova, B.A., and Smirnov, I.A., Metody issledovaniya poluprovodnikov v primenenii k khal’kogenidam svintsa PbTe, PbSe i PbS (Methods for Studying Semiconductors as Applied to Lead Chalcogenides PbTe, PbSe and PbS), Moscow: Nauka, 1968.

  30. Kvyatkovskii, O.E., Microscopic theory of lattice instability in displasive type ferroelectrics, Ferroelectrics, 1994, vol. 153, pp. 201–206.

    Article  Google Scholar 

  31. Kvyatkovskii, O.E., On local-field effects in semiconductors and dielectrics, Sov. Phys. Solid State, 1985, vol. 27, no. 9, pp. 1603–1608.

    Google Scholar 

  32. Kvyatkovskii, O.E., Dipole-dipole interactions in crystals and ferroelectric properties of A4B6 compounds, Sov. Phys. Solid State, 1986, vol. 28, no. 4, pp. 548–552.

    Google Scholar 

  33. Volkov, B.A. and Pankratov, O.A., Crystal structures and symmetry of the electron spectrum of IV–VI semiconductors, Sov. Phys. JETP, 1978, vol. 48, no. 4, pp. 687–696.

    Google Scholar 

  34. Volkov, B.A. and Pankratov, O.A., Electronic structure of point defects in A4B6 and semiconductors, Sov. Phys. JETP, 1985, vol. 61, no. 1, pp. 164–171.

    Google Scholar 

  35. Kalyuzhnaya, G.A. and Kiseleva, K.V., The problem of the institute of stoichiometry in semiconductors of variable composition, such as A2V6 and A4V6, in Stoichiometry in Crystal Compounds and Its Influence on their Physical Properties, Basov, N.G., Ed., Tr. FIAN Lebedeva, 1987, vol. 177, pp. 5–84.

  36. Mnyukh, Y., On the phase transitions that cannot and materialize, Am. J. Condens. Matter Phys., 2014, vol. 4, no. 1, pp. 1–12.

    Google Scholar 

  37. Mnyukh, Y. and Vodyanoy, V.J., Superconducting state and phase and transitions, Am. J. Condens. Matter Phys., 2017, vol. 7, no. 1, pp. 17–32.

    Google Scholar 

  38. Mnyukh, Y., Searching for a critical and phenomenon, Am. J. Condens. Matter Phys., 2020, vol. 10, no. 1, pp. 1–13.

    Google Scholar 

  39. Roy, A., Jahani, S., Langrock, C., Fejer, M., and Marandi, A., Spectral phase transitions in optical parametric oscillators, Nat. Commun., 2021, vol. 12, p. 835.

  40. Li, Z., Wu, Q., and Wu, C., Surface/interface chemistry engineering of correlated-electron materials: From conducting solids, phase transitions to external-field response, Adv. Sci., 2021, vol. 8, no. 4, p. 2002807.

  41. Li, X., Dreon, D., Zupancic, P., Baumgartner, A., Morales, A., Zheng, W., Cooper, N.R., Donner, T., and Esslinger, T., First order phase transition between two centro-symmetric superradiant crystals, Phys. Rev. Res., 2021, vol. 3, no. 1, p. L012024 .

  42. Pokrovsky, V.L., Landau and modern physics, Phys.— Usp., 2009, vol. 52, no. 11, pp. 1169–1176.

    Article  CAS  Google Scholar 

  43. Landau, L.D., Theory of phase transformations. I, Phys. Z. Sowjetunion, 1937, vol. 11, p. 26.

    CAS  Google Scholar 

  44. Landau, L.D., Theory of phase transformations. II, Phys. Z. Sowjetunion, 1937, vol. 11, p. 545.

    CAS  Google Scholar 

  45. Mnyukh, Yu., Fundamentals of Solid-State Phase Transitions, Ferromagnetism and Ferroelectricity, Princeton: Princeton Archit. Press, 2009.

    Google Scholar 

  46. Cross, L.E., Relaxor ferroelectrics, Ferroelectrics, 1987, vol. 76, no. 1, pp. 241–267.

    Article  CAS  Google Scholar 

  47. Bokov, A.A. and Ye, Z.-G., Recent progress in relaxor ferroelectrics with perovskite and structure, J. Mater. Sci., 2006, vol. 41, pp. 31–52.

    Article  CAS  Google Scholar 

  48. Levanyuk, A.P. and Sannikov, D.G., Anomalies in dielectric properties in phase transitions, Sov. Phys. JETP, 1969, vol. 28, no. 1, pp. 134–139.

    Google Scholar 

  49. Ginzburg, V.L., and Landau, L.D., On the theory of superconductivity, in Collected Papers of Landau, L.D., Oxford: Pergamon, 1965, p. 546.

    Google Scholar 

  50. Fritsberg, V.Ya. and Rolov, B.N., On some factors determining the nature of the ferroelectric phase transition, Izv. Akad. Nauk SSSR, Ser. Fiz., 1964, vol. 28, p. 649.

    Google Scholar 

  51. Rolov, B.N., Influence of composition fluctuations on smearing of ferroelectric phase transitions, Sov. Phys. Solid State, 1965, vol. 6, pp. 1676–1678.

    Google Scholar 

  52. Fritsberg, V.Ya. and Rolov, B.N., Some regularities of blurring of phase transitions in ferroelectric solid solutions, Izv. Akad. Nauk SSSR, Ser. Fiz., 1965, vol. 29, p. 1019.

    Google Scholar 

  53. Bokov, A.A., Patterns of the effect of disorder in a crystal structure on ferroelectric phase transitions, J. Exp. Theor. Phys., 1997, vol. 84, no. 5, pp. 994–1002.

    Article  Google Scholar 

  54. Smolenskii, G.A., Bokov, V.A., Isupov, V.A., Krainik, N.N., Pasynkov, R.E., Sokolov, A.I., and Yushin, N.K., Fizika segnetoelektricheskikh yavlenii (Physics of Ferroelectric Phenomena), Leningrad: Nauka, 1985.

  55. Tomaev, V.V., Makarov, L.L., Solomennikov, A.A., and Tikhonov, P.A., Oxidation kinetics of lead selenide, Glass Phys. Chem., 2004, vol. 30, no. 4, pp. 349–355.

    Article  CAS  Google Scholar 

  56. Aliev, S.A., Razmytie fazovykh perekhodov v poluprovodnikakh i vysokotemperaturnykh sverkhprovodnikakh. Monografiya (Blurring of Phase Transitions of Semiconductors and High-Temperature Superconductor), Baku: Elm, 2007.

  57. Mnyukh, Y. and Vodyanoy, V.J., Superconducting state and phase and transitions, Am. J. Condens. Matter Phys., 2017, vol. 7, no. 1, pp. 17–32.

    Google Scholar 

  58. Nuzhnyy, D., Kamba, S., Kuzel, P., Veljko, S., Bovtun, V., Savinov, M., Petzelt, J., Amorin, H., Costa, M.E.V., Kholkin, A.L., Boullay, Ph., and Adamczyk, M., Dynamics of the phase transitions in Bi-layered ferroelectrics with Aurivillius structure: Dielectric response in the terahertz spectral range, Phys. Rev. B, 2006, vol. 74, p. 134105.

  59. Rosas, B.Y., Instan, A.A., Mishra, K.K., Achary, S.N., and Katiyar, R.S., Studies of optical, dielectric, ferroelectric, and structural phase transitions in 0.9[KNbO3]-0.1 [BaNi1/2Nb1/2O3–δ], Crystals, 2022, vol. 35, no. 12, p. 35.

  60. Tomaev, V.V. and Syrkov, A.G., Structure-properties correlation of lead selenide–lead selenite composite, Key Eng. Mater., 2020, vol. 854, pp. 39–44.

    Article  Google Scholar 

  61. Ueda, S.T., Kwak, I., Abelson, A., Wolf, S., Qian, C., Law, M., and Kummel, A.C., Electronic passivation of PbSe quantum dot solids by trimethylaluminum vapor dosing, Appl. Surf. Sci., 2020, vol. 513, p. 145812.

  62. Zhao, F., Mukherjee, S., Ma, J., Li, D., Elizondo, S.L., and Shi, Z., Influence of oxygen passivation on optical properties of PbSe thin films, Appl. Phys. Lett., 2008, vol. 92, no. 21, p. 211110.

  63. Peters, J.L., van der Bok, J.C., Hofmann, J.P., and Vanmaekelbergh, D., Hybrid oleate–iodide ligand shell for air-stable PbSe nanocrystals and superstructures, Chem. Mater., 2019, vol. 31, pp. 5808–5815.

    Article  CAS  Google Scholar 

  64. Bi, G., Zhao, F., Ma, J., Mukherjee, S., Li, D., and Shi, Z., Modeling of the potential profile for the annealed polycrystalline PbSe film, PIERS Online, 2009, vol. 5, no. 1, pp. 61–64.

    Article  Google Scholar 

  65. Zhao, F., Ma, J., Li, D., Mukherjee, S., Bi, G., and Shi, Z., Influence of oxygen post-growth annealing on optical and electrical properties of PbSe thin and films, J. Electron. Mater., 2009, vol. 38, no. 8, pp. 1661–1665.

    Article  CAS  Google Scholar 

  66. Thanikaikarasan, S., Mahalingam, T., Kathalingam, A., and Rhee, J.-K., Growth and characterization of lead selenide thin and films, J. Mater. Sci.: Mater. Electron., 2012, vol. 23, pp. 1562–1568.

    CAS  Google Scholar 

  67. Raju, G.S.R., Pavitra, E., Nagaraju, G., Guan, X.-Y., and Yu, J.S., UV-A and UV-B excitation region broadened novel green color-emitting CaGd2ZnO5:Tb3+ nanophosphors, RSC Adv., 2015, vol. 5, no. 28, pp. 22217–2223.

    Article  Google Scholar 

  68. Zarubina, N.V., Zarubin, I.V., Maskaeva, L.N., and Markov, V.F., Composition, structure, morphology of thin films produced by hydrochemical deposition in PbSe–CdSe system, Eur. Rev. Chem. Res., 2015, vol. 3, no. 1, pp. 290–293.

    Article  Google Scholar 

  69. Li, Y., He, B., Heremans, J.P., and Zhao, J.-C., High-temperature oxidation behavior of thermoelectric and SnSe, J. Alloys Compd., 2016, vol. 669, pp. 224–231.

    Article  CAS  Google Scholar 

  70. Razina, A.G., Thermochromism of the semiconductor film system and Pb–Se, J. Phys.: Conf. Ser., 2019, vol. 1189, no. 1, p. 012016.

  71. Peng, X., Abelson, A., Wang, Y., Qian, C., Shangguan, J., Zhang, Q., Yu, L., Yin, Z.-W., Zheng, W., Bustillo, K.C., Guo, X., Liao, H.-G., Sun, S.-G., Law, M., and Zheng, H., In situ TEM study of the degradation of PbSe nanocrystals in air, Chem. Mater., 2019, vol. 31, pp. 190–199.

    Article  CAS  Google Scholar 

  72. McDowell, L.L., Qiu, J., Weng, B., and Shi, Z., Growth study of new complex oxide PbOxSe1—x thin films by oxygen plasma-assisted molecular beam epitaxy, Cryst. Growth Des., 2019, vol. 19, pp. 2253–2258.

    Article  CAS  Google Scholar 

  73. Goodfellow, B.W., Patel, R.N., Panthani, M.G., Smilgies, D.-M., and Korgel, B.A., Melting and sintering of a body-centered cubic superlattice of PbSe nanocrystals followed by small angle X-ray scattering, J. Phys. Chem. C, 2011, vol. 115, no. 14, pp. 6397–6404.

    Article  CAS  Google Scholar 

  74. Tretyakova, N.A., IR sensitization of PbSnSe films by heat treatment in air, Inorg. Mater., 2017, vol. 53, no. 10, pp. 1005–1008.

    Article  CAS  Google Scholar 

  75. Rzhanov, A.V., Barium titanate—A new ferroelectric, Usp. Fiz. Nauk, 1949, vol. 38, no. 4, p. 461–489.

    Article  CAS  Google Scholar 

  76. Proshkin, S., Multipurpose calorimeter to measure thermophysical properties, ARPN J. Eng. Appl. Sci., 2018, vol. 13, no. 5, pp. 1827–1832.

  77. Proshkin, S., Multifunctional device for measuring thermal properties under phase and transitions, J. Phys.: Conf. Ser., 2019, vol. 1172, p. 012061.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Tomaev or S. S. Proshkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomaev, V.V., Danilovich, D.P. & Proshkin, S.S. Effect of Disorder in the Structure of a Ferroelectric Composite Material xPbSe·(1 – x)PbSeO3 on the Smearing of the Phase Transition. Glass Phys Chem 49, 364–373 (2023). https://doi.org/10.1134/S1087659623600278

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659623600278

Keywords:

Navigation