Skip to main content

Advertisement

Log in

Population genetic structure of wild Angelica acutiloba, A. acutiloba var. iwatensis, and their hybrids by atpF–atpA intergenic spacer in chloroplast DNA and genome-wide SNP analysis using MIG-seq

  • Natural Resource Letter
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Sampling surveys of Angelica acutiloba and A. acutiloba var. iwatensis, which are medicinal plants endemic to Japan, were conducted in the Chubu region in the central area of the main island of Japan. A. acutiloba grows in riverbeds in mountainous areas, while A. acutiloba. var. iwatensis grows on slopes near mountain ridges at 1000 m above sea level or on constantly collapsing rocky slopes and bare fields on developed land along asphalt roads in valleys of mountainous areas. Specimens of two wild Angelica species collected in this region were examined for maternal lineage by DNA polymorphism analysis of the atpF–atpA region for chloroplast DNA using direct sequencing and genomic component analysis by genome-wide SNP using MIG-seq. In this study area, while all A. acutiloba populations were monophyletic in both maternal and ancestral lineages, A. acutiloba var. iwatensis were genetically heterogeneous due to being composed of three maternal and three ancestral lineages to various degrees. In addition, a natural hybrid population with maternal lineage presumed to be A. acutiloba and paternal lineage A. acutiloba var. iwatensis was also found. In the present study, we report that the combined method of atpF–atpA and MIG-seq analyses is a useful tool for determining the population genetic structure of two wild Angelica species and for identifying hybrids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Afendi FM, Katsuragi T, Kato A, Nishihara N, Nakamura K, Nakamura Y, Tanaka K, Morita AH, Amin AU, Takahashi H, Kanaya S (2012) Systems biology approaches and metabolomics for understanding Japanese Traditional Kampo Medicine. Curr Pharmacogenomics Pers Med 10:111–124

    Article  CAS  Google Scholar 

  2. Japanese pharmacopoeia committee (2021) Japanese Angelica root. In: Japanese pharmacopoeia committee (ed) The Japanese Pharmacopoeia, Eighteenth Edition. Ministry of Health, Labour and Welfare, Tokyo, p 2039

  3. Fukuda K, Murata K, Matsuda H, Tani T (2009) History and the present of cultivation and production of Angelica root, Yamato-Toki, in Japan. Jpn J History Pharm 44:10–17 (in Japanese with English summary)

    Google Scholar 

  4. Kohjyouma M, Iida O, Yoshida N, Hatakeyama Y, Satake M, Sekita S, Kohda H (1998) Random amplified polymorphic DNA analysis of Angelica acutiloba and its varieties. Nat Med 52:130–134

    CAS  Google Scholar 

  5. Matsubara K, Shindo S, Watanabe H, Ikegami F (2012) Identification of Angelica acutiloba and related species by analysis of inter- and intra-specific sequence variations in chloroplast and nuclear DNA sequences. Am J Plant Sci 3:1260–1265

    Article  CAS  Google Scholar 

  6. Matsubara K, Shindo S, Watanabe H, Ikegami F (2013) Authentication and genetic origin of medicinal Angelica acutiloba using random amplified polymorphic DNA analysis. Am J Plant Sci 4:269–273

    Article  CAS  Google Scholar 

  7. Ueno M, Sasaki Y (2015) Study on Angelica acutiloba subsp. iwatensis as a medicinal resource. Bullet Jpn Assoc Bot Gard 50:23–28 (in Japanese with English summary)

    Google Scholar 

  8. Hikino H (1958) On the original plants of crude drugs ‘Tōki’ in Japan (Studies on ‘Tōki’, 1). Acta Phytotax Geobot 17:76–84 (in Japanese)

    Google Scholar 

  9. Yanagisawa K (2017) Transition of psychotropic/neurological drugs in Japanese Pharmacopoeia (JP) (Part 19) Transition in the standards and test methods of Angelicae acutilobae radix from JPVII (1961)–JPXVII (2016). Jpn J History Pharm 52:41–50 (in Japanese with English summary)

    Google Scholar 

  10. Hatano K, Nishioka I, Iwasa S (1977) Cytogenetical studies of umberlliferous plants. V. Intraspecific hybrids among original plants of Japanese “Tōki.” Shoyakugaku Zasshi 31:7–25 (in Japanese with English summary)

    Google Scholar 

  11. Sada Y, Tanaka S, Tabata M, Ozaki K, Komiya T (1993) Evaluation of intervarietal F1 hybrids of the medicinal plants, Angelica acutiloba, clonally propagated by somatic embryogenesis. Shoyakugaku Zasshi 47:235–242 (in Japanese with English summary)

    Google Scholar 

  12. Fukuda K, Murata K, Matsuda H, Taniguchi M, Shibano M, Baba K, Shiratori M, Tani T (2009) Quality of Angelica acutiloba roots cultivated and processed in Sichuan province of China. J Trad Med 26:169–178

    Google Scholar 

  13. Zhang DY, Chen N, Yang YZ, Zhang Q, Liu JQ (2008) Development of 10 microsatellite loci for Rheum tanguticum (Polygonaceae). Conserv Genet 9:475–477

    Article  CAS  Google Scholar 

  14. Hu Y, Wang L, Xie X, Yang J, Li Y, Zhang H (2010) Genetic diversity of wild populations of Rheum tanguticum endemic to China as revealed by ISSR analysis. Biochem Syst Ecol 38:264–274

    Article  CAS  Google Scholar 

  15. De J, Zhu W, Liu T, Wang Z, Zhong Y (2017) Development of microsatellite markers using Illumine MiSeq sequencing to characterize Ephedra gerardiana (Ephedraceae). Appl Plant Sci 5:1600104

    Article  Google Scholar 

  16. Meena B, Singh N, Mahar KS, Sharma YK, Rana TS (2019) Molecular analysis of genetic diversity and population genetic structure in Ephedra foliata: an endemic and threatened plant species of arid and semi-arid regions of India. Physiol Mol Biol Plants 25:753–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Suyama Y, Matsuki Y (2015) MIG-seq: an effective PCR-based method for genome-wide single-nucleotide polymorphism genotyping using the next-generation sequencing platform. Sci Rep 5:16963. https://doi.org/10.1038/srep16963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tamaki I, Watanabe Y, Matsuki Y, Suyama Y, Mizuno M (2017) Inconsistency between morphological traits and ancestry of individuals in the hybrid zone between two Rhododendron japonoheptamerum varieties revealed by a genotyping-by-sequencing approach. Tree Genet Genomes 13:4. https://doi.org/10.1007/s11295-016-1084-x

    Article  Google Scholar 

  19. Watanabe Y, Kawamata I, Matsuki Y, Suyama Y, Uehara K, Ito M (2018) Phylogeographic analysis suggests two origins for the riparian azalea Rhododendron indicum (L.) Sweet. Heredity 121:594–604

    Article  Google Scholar 

  20. Onosato K, Shitara T, Matsumoto A, Matsuo A, Suyama Y, Tsumura Y (2020) Contact zone of two different chloroplast lineages and genetic guidelines for seed transfer in Quercus serrata and Quercus crispula. Plant Species Biol 36:72–83

    Article  Google Scholar 

  21. Hosokawa K, Hishida A, Nakamura I, Shibata T (2006) The sequences of the spacer region between the atpF and atpA genes in the plastid genome allows discrimination among three varieties of medicinal Angelica. Planta Med 72:570–571

    Article  CAS  PubMed  Google Scholar 

  22. Noro Y, Hisata Y, Okuda K, Kawamura T, Ishikawa I, Sakai E, Tanaka T (1989) Pharmacognostical studies of Angelica Radix (1) Phtalide content of wild Angelica strains. Shoyakugaku Zasshi 43:55–58 (in Japanese with English summary)

    CAS  Google Scholar 

  23. Gotoh T, Tanaka T, Kawamura T, Noro Y (1995) Phytosociological studies of the communities on Angelica acutiloba and A. acutiloba var. iwatensis (1) Gifu Prefecture and its surroundings. Nat Med 49:255–260 (in Japanese with English summary)

    Google Scholar 

  24. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rochette NC, Rivera-Colón AG, Catchen JM (2019) Stacks 2: analytical methods for paired-end sequencing improve REDseq-based population genomics. Mol Ecol 28:4737–4754

    Article  CAS  PubMed  Google Scholar 

  26. Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19:1655–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Puechmaille SJ (2016) The program STRUCTURE does not reliably recover the correct population structure when sampling is uneven: subsampling and new estimators alleviate the problem. Mol Ecol Resour 16:608–627

    Article  PubMed  Google Scholar 

  28. Li YL, Liu JX (2017) StructureSelector: a web-based software to select and visualize the optimal number of clusters using multiple methods. Mol Ecol Resour 18:176–177

    Article  CAS  PubMed  Google Scholar 

  29. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  30. Ohba H (1999) Angelica L. In: Iwatsuki K, Boufford DE, Ohba H (eds) Flora of Japan, vol IIc. Kodansha, Tokyo, pp 290–300

    Google Scholar 

  31. Suzuki H (2017) Angelica L. In: Ohashi H, Kadota Y, Murata J, Yonekura K, Kihara H (eds) Wild flowers of Japan, vol 5. Heibonsha, Tokyo, pp 387–391 (in Japanese)

    Google Scholar 

  32. Okada M, Mitsuhashi H (2002) Angelica acutiloba (Sieb. et Zucc.) Kitagawa. In: Okada M, Mitsuhashi H (eds) Newly revised illustrated medicinal plants of the world. Hokuryukan, Tokyo, p 347 (in Japanese)

  33. Watano Y, Kanai A, Tani N (2004) Genetic structure of hybrid zones between Pinus pumila and P. parviflora var. pentaphylla (Pinaceae) revealed by molecular hybrid index analysis. Am J Bot 91:65–72

    Article  CAS  PubMed  Google Scholar 

  34. Okada M, Mitsuhashi H (2002) Angelica acutiloba Kitagawa var. iwatensis (Kitagawa) Hikino. In: Okada M, Mitsuhashi H (eds) Newly revised illustrated medicinal plants of the world. Hokuryukan, Tokyo, p 346 (in Japanese)

  35. Zang Y, Wang R, Xie Z, Wang Y, Zhao X, Liu Y, Zhou Q (2020) Rapid visual detection of Japanese hornwort mosaic virus infecting Angelica sinensis by reverse transcription loop-mediated isothermal amplification. Ann Appl Biol 178:489–497

    Article  Google Scholar 

  36. Kwak HR, Hong SB, Choi HY, Park G, Hur OS, Byun HS, Choi HS, Kim M (2021) First report of tomato spotted wilt virus in Angelica acutiloba. Res Plant Dis 27:84–90 (in Korean with English summary)

    Article  CAS  Google Scholar 

  37. Sato T, Uehara-Ichiki T (2018) Medicinal crops with number of unknown diseases. JATAFF journal 6:30–35 (in Japanese)

    Google Scholar 

  38. Sato T (2017) Diseases of medicinal plants (4). Jpn J Med Resour 39:22–33 (in Japanese)

    Google Scholar 

Download references

Acknowledgements

The authors thank Mr. Toshiharu Gotoh for providing the information on the distribution of Angelica plants.

Funding

This research was supported by the Chubu University Grant (A1) (Grant Number 21M05A1).

Author information

Authors and Affiliations

Authors

Contributions

Dr. Minami supervised the research, wrote the manuscript, and analyzed the data. Mr. Tanaka, Mrs. Mori, and Dr. Fujii performed DNA analysis and data analysis. Drs. Tsuchida and Shibata revised and submitted the manuscript. All authors contributed to the collection of Angelica plants.

Corresponding author

Correspondence to Motoyasu Minami.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minami, M., Tanaka, R., Mori, T. et al. Population genetic structure of wild Angelica acutiloba, A. acutiloba var. iwatensis, and their hybrids by atpF–atpA intergenic spacer in chloroplast DNA and genome-wide SNP analysis using MIG-seq. J Nat Med 77, 1009–1021 (2023). https://doi.org/10.1007/s11418-023-01742-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-023-01742-6

Keywords

Navigation