Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Research Article

Deciphering Target Protein Cascade in Salmonella typhi Biofilm using Genomic Data Mining, and Protein-protein Interaction

Author(s): Aditya Upadhyay, Dharm Pal* and Awanish Kumar*

Volume 24, Issue 2, 2023

Published on: 18 August, 2023

Page: [100 - 109] Pages: 10

DOI: 10.2174/1389202924666230815144126

Price: $65

Abstract

Background: Salmonella typhi biofilm confers a serious public health issue for lengthy periods and the rise in antibiotic resistance and death rate. Biofilm generation has rendered even the most potent antibiotics ineffective in controlling the illness, and the S. typhi outbreak has turned into a fatal disease typhoid. S. typhi infection has also been connected to other deadly illnesses, such as a gall bladder cancer. The virulence of this disease is due to the interaction of numerous genes and proteins of S. typhi.

Objective: The study aimed to identify a cascade of target proteins in S. typhi biofilm condition with the help of genomic data mining and protein-protein interaction analysis.

Methods: The goal of this study was to notice some important pharmacological targets in S. typhi. using genomic data mining, and protein-protein interaction approaches were used so that new drugs could be developed to combat the disease.

Results: In this study, we identified 15 potential target proteins that are critical for S. typhi biofilm growth and maturation. Three proteins, CsgD, AdrA, and BcsA, were deciphered with their significant role in the synthesis of cellulose, a critical component of biofilm's extracellular matrix. The CsgD protein was also shown to have high interconnectedness and strong interactions with other important target proteins of S. typhi. As a result, it has been concluded that CsgD is involved in a range of activities, including cellulose synthesis, bacterial pathogenicity, quorum sensing, and bacterial virulence.

Conclusion: All identified targets in this study possess hydrophobic properties, and their cellular localization offered proof of a potent therapeutic target. Overall results of this study, drug target shortage in S. typhi is also spotlighted, and we believe that obtained result could be useful for the design and development of some potent anti-salmonella agents for typhoid fever in the future.

Keywords: Salmonella typhi, biofilm, antibiotic resistance, drug targets identification, anti-biofilm therapeutics, typhoid fever.

Next »
Graphical Abstract
[1]
Wilairatana, P.; Mala, W.; Klangbud, W.K.; Kotepui, K.U.; Rattaprasert, P.; Kotepui, M. Prevalence, probability, and outcomes of typhoidal/non-typhoidal Salmonella and malaria co-infection among febrile patients: A systematic review and meta-analysis. Sci. Rep., 2021, 11(1), 21889.
[http://dx.doi.org/10.1038/s41598-021-00611-0]
[2]
Smith, S.I.; Seriki, A.; Ajayi, A. Typhoidal and non-typhoidal Salmonella infections in Africa. Eur. J. Clin. Microbiol. Infect. Dis., 2016, 35(12), 1913-1922.
[http://dx.doi.org/10.1007/s10096-016-2760-3] [PMID: 27562406]
[3]
Karkey, A.; Thwaites, G.E.; Baker, S. The evolution of antimicrobial resistance in Salmonella typhi. Curr. Opin. Gastroenterol., 2018, 34(1), 25-30.
[http://dx.doi.org/10.1097/MOG.0000000000000406] [PMID: 29059070]
[4]
Harrell, J.E.; Hahn, M.M.; D’Souza, S.J.; Vasicek, E.M.; Sandala, J.L.; Gunn, J.S.; McLachlan, J.B. Salmonella biofilm formation, chronic infection, and immunity within the intestine and hepatobiliary tract. Front. Cell. Infect. Microbiol., 2021, 10, 624622.
[http://dx.doi.org/10.3389/fcimb.2020.624622] [PMID: 33604308]
[5]
Høiby, N.; Bjarnsholt, T.; Givskov, M.; Molin, S.; Ciofu, O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents, 2010, 35(4), 322-332.
[http://dx.doi.org/10.1016/j.ijantimicag.2009.12.011] [PMID: 20149602]
[6]
Thajuddin, D.P.E-D.D.E-N. Biofilm Formation of Salmonella; Intechopen, 2016.
[http://dx.doi.org/10.5772/62905]
[7]
Chandra, M.; Thakur, S.; Narang, D.; Kaur, G.; Sharma, N.S. Evaluation of Salmonella typhimurium biofilm against some antibiotics. Indian J. Exp. Biol., 2017, 55(8), 562-567.
[8]
Sabbagh, S.C.; Forest, C.G.; Lepage, C.; Leclerc, J.M.; Daigle, F. So similar, yet so different: uncovering distinctive features in the genomes of Salmonella enterica serovars typhimurium and Typhi. FEMS Microbiol. Lett., 2010, 305(1), 1-13.
[http://dx.doi.org/10.1111/j.1574-6968.2010.01904.x] [PMID: 20146749]
[9]
Gill, M.A.; Rafique, M.W.; Manan, T.; Slaeem, S.; Römling, U.; Matin, A.; Ahmad, I. The cellulose synthase BcsA plays a role in interactions of Salmonella typhimurium with Acanthamoeba castellanii genotype T4. Parasitol. Res., 2018, 117(7), 2283-2289.
[http://dx.doi.org/10.1007/s00436-018-5917-4] [PMID: 29797083]
[10]
Yu, C.S.; Cheng, C.W.; Su, W.C.; Chang, K.C.; Huang, S.W.; Hwang, J.K.; Lu, C.H. CELLO2GO: A web server for protein subCELlular LOcalization prediction with functional gene ontology annotation. PLoS One, 2014, 9(6), e99368.
[http://dx.doi.org/10.1371/journal.pone.0099368] [PMID: 24911789]
[11]
Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; Kuhn, M.; Bork, P.; Jensen, L.J.; von Mering, C. STRING v10: Protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res., 2015, 43(D1), D447-D452.
[http://dx.doi.org/10.1093/nar/gku1003] [PMID: 25352553]
[12]
Chen, Q.; Xia, S.; Sui, H.; Shi, X.; Huang, B.; Wang, T. Identification of hub genes associated with COVID-19 and idiopathic pulmonary fibrosis by integrated bioinformatics analysis. PLoS One, 2022, 17(1), e0262737.
[http://dx.doi.org/10.1371/journal.pone.0262737] [PMID: 35045126]
[13]
Liu, Z.; Niu, H.; Wu, S.; Huang, R. CsgD regulatory network in a bacterial trait-altering biofilm formation. Emerg. Microbes Infect., 2014, 3(1), 1-5.
[http://dx.doi.org/10.1038/emi.2014.1] [PMID: 26038492]
[14]
Hunter, S.; Apweiler, R.; Attwood, T.K.; Bairoch, A.; Bateman, A.; Binns, D.; Bork, P.; Das, U.; Daugherty, L.; Duquenne, L.; Finn, R.D.; Gough, J.; Haft, D.; Hulo, N.; Kahn, D.; Kelly, E.; Laugraud, A.; Letunic, I.; Lonsdale, D.; Lopez, R.; Madera, M.; Maslen, J.; McAnulla, C.; McDowall, J.; Mistry, J.; Mitchell, A.; Mulder, N.; Natale, D.; Orengo, C.; Quinn, A.F.; Selengut, J.D.; Sigrist, C.J.A.; Thimma, M.; Thomas, P.D.; Valentin, F.; Wilson, D.; Wu, C.H.; Yeats, C. InterPro:The integrative protein signature database Nucleic Acids Res, 2009, 37(Database), d211-d215.
[http://dx.doi.org/10.1093/nar/gkn785] [PMID: 18940856]
[15]
Chang, H.R.; Loo, L.H.; Jeyaseelan, K.; Earnest, L.; Stackebrandt, E. Phylogenetic relationships of Salmonella typhi and Salmonella typhimurium based on 16S rRNA sequence analysis. Int. J. Syst. Bacteriol., 1997, 47(4), 1253-1254.
[http://dx.doi.org/10.1099/00207713-47-4-1253] [PMID: 9336938]
[16]
Dönnes, P.; Höglund, A. Predicting protein subcellular localization: Past, present, and future. Genomics Proteomics Bioinformatics, 2004, 2(4), 209-215. Available from: www.sciencedirect.com/science/article/pii/S1672022904020273
[17]
González, J.F.; Tucker, L.; Fitch, J.; Wetzel, A.; White, P.; Gunn, J.S. Human bile-mediated regulation of salmonella curli fimbriae. J. Bacteriol., 2019, 201(18), e00055-e19.
[http://dx.doi.org/10.1128/JB.00055-19] [PMID: 30936374]
[18]
Pardo-Esté, C.; Hidalgo, A.A.; Aguirre, C.; Inostroza, A.; Briones, A.C.; Cabezas, C.E.; Castro-Severyn, J.; Fuentes, J.A.; Opazo, C.M.; Riedel, C.A.; Otero, C.; Pacheco, R.; Valvano, M.A.; Saavedra, C.P. Correction: The ArcAB two-component regulatory system promotes resistance to reactive oxygen species and systemic infection by Salmonella typhimurium. PLoS One, 2019, 14(3), e0214634.
[http://dx.doi.org/10.1371/journal.pone.0214634] [PMID: 30913267]
[19]
Sholpan, A.; Lamas, A.; Cepeda, A.; Franco, C.M. Salmonella spp. quorum sensing: an overview from environmental persistence to host cell invasion. AIMS Microbiol., 2021, 7(2), 238-256.
[http://dx.doi.org/10.3934/microbiol.2021015] [PMID: 34250377]
[20]
Kolenda, R.; Ugorski, M.; Grzymajlo, K. Everything you always wanted to know about Salmonella type 1 fimbriae, but were afraid to ask. Front. Microbiol., 2019, 10(MAY), 1017.
[http://dx.doi.org/10.3389/fmicb.2019.01017] [PMID: 31139165]
[21]
García, B.; Latasa, C.; Solano, C.; Portillo, F.G.; Gamazo, C.; Lasa, I. Role of the GGDEF protein family in Salmonella cellulose biosynthesis and biofilm formation. Mol. Microbiol., 2004, 54(1), 264-277.
[http://dx.doi.org/10.1111/j.1365-2958.2004.04269.x] [PMID: 15458421]
[22]
Grantcharova, N.; Peters, V.; Monteiro, C.; Zakikhany, K.; Römling, U. Bistable expression of CsgD in biofilm development of Salmonella enterica serovar typhimurium. J. Bacteriol., 2010, 192(2), 456-466.
[http://dx.doi.org/10.1128/JB.01826-08] [PMID: 19897646]
[23]
Upadhayay, A.; Pal, D.; Kumar, A. Salmonella typhi induced oncogenesis in gallbladder cancer: Co-relation and progression. Adv Cancer Biol: Metastasis., 2022, 4, 100032.
[24]
Upadhyay, A.; Pal, D.; Kumar, A. Substantial relation between the bacterial biofilm and oncogenesis progression in host. Microb. Pathog., 2023, 175, 105966.
[http://dx.doi.org/10.1016/j.micpath.2022.105966] [PMID: 36592641]
[25]
Upadhyay, A.; Pal, D.; Kumar, A. Combinatorial enzyme therapy: A promising neoteric approach for bacterial biofilm disruption. Process Biochem., 2023, 129, 56-66. Available from: https://www.sciencedirect.com/science/article/pii/S1359511323000697
[http://dx.doi.org/10.1016/j.procbio.2023.02.022]
[26]
Upadhayay, A.; Ling, J.; Pal, D.; Xie, Y.; Ping, F.F.; Kumar, A. Resistance-proof antimicrobial drug discovery to combat global antimicrobial resistance threat. Drug Resist. Updat., 2023, 66, 100890.
[http://dx.doi.org/10.1016/j.drup.2022.100890] [PMID: 36455341]
[27]
Wen, Y.; Ouyang, Z.; Devreese, B.; He, W.; Shao, Y.; Lu, W.; Zheng, F. Crystal structure of master biofilm regulator CsgD regulatory domain reveals an atypical receiver domain. Protein Sci., 2017, 26(10), 2073-2082.
[http://dx.doi.org/10.1002/pro.3245] [PMID: 28758290]
[28]
Ahmer, B.M.M.; van Reeuwijk, J.; Timmers, C.D.; Valentine, P.J.; Heffron, F. Salmonella typhimurium encodes an SdiA homolog, a putative quorum sensor of the LuxR family, that regulates genes on the virulence plasmid. J. Bacteriol., 1998, 180(5), 1185-1193.
[http://dx.doi.org/10.1128/JB.180.5.1185-1193.1998] [PMID: 9495757]
[29]
Jonas, K.; Tomenius, H.; Kader, A.; Normark, S.; Römling, U.; Belova, L.M.; Melefors, Ö. Roles of curli, cellulose and BapA in Salmonella biofilm morphology studied by atomic force microscopy. BMC Microbiol., 2007, 7(1), 70.
[http://dx.doi.org/10.1186/1471-2180-7-70] [PMID: 17650335]
[30]
Pickard, D.; Li, J.; Roberts, M.; Maskell, D.; Hone, D.; Levine, M.; Dougan, G.; Chatfield, S. Characterization of defined ompR mutants of Salmonella typhi: OmpR is involved in the regulation of Vi polysaccharide expression. Infect. Immun., 1994, 62(9), 3984-3993.
[http://dx.doi.org/10.1128/iai.62.9.3984-3993.1994] [PMID: 8063417]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy