Skip to main content
Log in

On the Optimal Control of a Linear Peridynamics Model

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

We study a non-local optimal control problem involving a linear, bond-based peridynamics model. In addition to existence and uniqueness of solutions to our problem, we investigate their behavior as the horizon parameter \(\delta \), which controls the degree of nonlocality, approaches zero. We then study a finite element-based discretization of this problem, its convergence, and the so-called asymptotic compatibility as the discretization parameter h and the horizon parameter \(\delta \) tend to zero simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Acosta, G., Borthagaray, J.P.: A fractional laplace equation: Regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 55(2), 472–495 (2017)

    MathSciNet  MATH  Google Scholar 

  2. Antil, H., Brown, T.S., Khatri, R., Onwunta, A., Verma, D., Warma, M.: Optimal control, numerics, and applications of fractional PDEs. arXiv preprintarXiv:2106.13289, (2021)

  3. Antil, H., Pfefferer, J., Warma, M.: A note on semilinear fractional elliptic equation: analysis and discretization. ESAIM: Math. Model. Numer. Anal. 51(6), 2049–2067 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Antil, H., Verma, D., Warma, M.: Optimal control of fractional elliptic PDEs with state constraints and characterization of the dual of fractional-order Sobolev spaces. J. Optim. Theory Appl. 186(1), 1–23 (2020)

    MathSciNet  MATH  Google Scholar 

  5. Bellido, J.C., Mora-Corral, C.: Existence for nonlocal variational problems in peridynamics. SIAM J. Math. Anal. 46(1), 890–916 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Bellido, J.C., Mora-Corral, C., Pedregal, P.: Hyperelasticity as a \(\Gamma \)-limit of peridynamics when the horizon goes to zero. Calc. Var. Partial Differ. Equ. 54(2), 1643–1670 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Bhattacharya, D., Lipton, R., Diehl, P.: Quasistatic fracture evolution. (2023) arXiv preprint. arXiv:2212.08753

  8. Bonder, J.F., Silva, A., Spedaletti, J.F.: Gamma convergence and asymptotic behavior for eigenvalues of nonlocal problems. arXiv preprint arXiv:1912.01926 (2019)

  9. Bonito, A., Borthagaray, J.P., Nochetto, R.H., Otárola, E., Salgado, A.J.: Numerical methods for fractional diffusion. Comput. Vis. Sci. 19(5), 19–46 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Borthagaray, J.P., Nochetto, R.H., Salgado, A.J.: Weighted Sobolev regularity and rate of approximation of the obstacle problem for the integral fractional Laplacian. Math. Models Methods Appl. Sci. 29(14), 2679–2717 (2019)

    MathSciNet  Google Scholar 

  11. Bourgain, J., Brezis, H., Mironescu, P. Another look at Sobolev spaces. HAL (2001)

  12. Braides, A., et al.: Gamma-Convergence for Beginners, vol. 22. Clarendon Press, Oxford (2002)

    MATH  Google Scholar 

  13. Buczkowski, N.E., Foss, M.D., Parks, M.L., Radu, P.: Sensitivity analysis for solutions to heterogeneous nonlocal systems. Theoretical and numerical studies. J. Peridyn. Nonlocal Model. 4, 367–397 (2022)

    MathSciNet  Google Scholar 

  14. Burkovska, O., Glusa, C., D’Elia, M.: An optimization-based approach to parameter learning for fractional type nonlocal models. Comput. Math. Appl. 116, 229–244 (2021)

    MathSciNet  MATH  Google Scholar 

  15. Buttazzo, G., Dal Maso, G.: \(\Gamma \)-convergence and optimal control problems. J. Optim. Theory Appl. 38(3), 385–407 (1982)

    MathSciNet  MATH  Google Scholar 

  16. Casas, E., Herzog, R., Wachsmuth, G.: Optimality conditions and error analysis of semilinear elliptic control problems with \(L^1\) cost functional. SIAM J. Optim. 22(3), 795–820 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Casas, E., Tröltzsch, F.: Second order optimality conditions and their role in PDE control. Jahresbericht der Deutschen Mathematiker-Vereinigung 117(1), 3–44 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Dal Maso, G.: An Introduction to \(\Gamma \)-Convergence, vol. 8. Springer, Berlin (2012)

    Google Scholar 

  19. D’elia, M., Glusa, C., Otárola, E.: A priori error estimates for the optimal control of the integral fractional Laplacian. SIAM J. Control Optim. 57(4), 2775–2798 (2019)

    MathSciNet  MATH  Google Scholar 

  20. D’Elia, M., Gunzburger, M.: Optimal distributed control of nonlocal steady diffusion problems. SIAM J. Control Optim. 52(1), 243–273 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Demengel, F., Demengel, G., Erné, R.: Functional Spaces for the Theory of Elliptic Partial Differential Equations. Springer, Berlin (2012)

    MATH  Google Scholar 

  22. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bulletin des sciences mathématiques 136(5), 521–573 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Diehl, P., Lipton, R.: Quasistatic fracture using nonlinear-nonlocal elastostatics with explicit tangent stiffness matrix. Int. J. Numer. Methods Eng. 123(18), 4183–4208 (2022)

    MathSciNet  Google Scholar 

  24. Diehl, P., Lipton, R., Wick, T., Tyagi, M.: A comparative review of peridynamics and phase-field models for engineering fracture mechanics. Comput. Mech. 69(6), 1259–1293 (2022)

    MathSciNet  MATH  Google Scholar 

  25. Du, Q., Gunzburger, M., Lehoucq, R.B., Zhou, K.: Analysis of the volume-constrained peridynamic Navier equation of linear elasticity. J. Elast. 113(2), 193–217 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Du, Q., Mengesha, T., Tian, X.: Nonlocal criteria for compactness in the space of \(L^p\) vector fields. arXiv:1801.08000 (2018)

  27. Ern, A., Guermond, J.-L.: Finite element quasi-interpolation and best approximation. ESAIM: Math. Model. Numer. Anal. 51(4), 1367–1385 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Evgrafov, A., Bellido, J.C.: Nonlocal control in the conduction coefficients: well-posedness and convergence to the local limit. SIAM J. Control Optim. 58(4), 1769–1794 (2020)

    MathSciNet  MATH  Google Scholar 

  29. Foghem, G., Kassmann, M.: A general framework for nonlocal Neumann problems. arXiv:2204.06793 (2022)

  30. Foss, M.: Nonlocal Poincaré inequalities for integral operators with integrable nonhomogeneous kernels. arXiv preprintarXiv:1911.10292, (2019)

  31. Fabrice, G., Gounoue, F.: \( L^2\)-theory for nonlocal operators on domains. Publikationen an der Universität Bielefeld (2020)

  32. Grubb, G.: Fractional Laplacians on domains, a development of Hörmander’s theory of \(\mu \)-transmission pseudodifferential operators. Adv. Math. 268, 478–528 (2015)

    MathSciNet  MATH  Google Scholar 

  33. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints, vol. 23. Springer, Berlin (2008)

    MATH  Google Scholar 

  34. Jarohs, S., Weth, T.: On the strong maximum principle for nonlocal operators. Mathematische Zeitschrift 293(1), 81–111 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Jarohs, S., Weth, T.: Local compactness and nonvanishing for weakly singular nonlocal quadratic forms. Nonlinear Anal. 193, 1114–1131 (2020)

    MathSciNet  MATH  Google Scholar 

  36. Leng, Y., Tian, X., Trask, N., Foster, J.T.: Asymptotically compatible reproducing kernel collocation and meshfree integration for nonlocal diffusion. SIAM J. Numer. Anal. 59(1), 88–118 (2021)

    MathSciNet  MATH  Google Scholar 

  37. Leng, Y., Tian, X., Trask, N.A., Foster, J.T.: Asymptotically compatible reproducing kernel collocation and meshfree integration for the peridynamic Navier equation. Comput. Methods Appl. Mech. Eng. 370, 113264 (2020)

    MathSciNet  MATH  Google Scholar 

  38. Leoni, G.: A first course in Sobolev spaces. American Mathematical Society, Providence (2017)

    MATH  Google Scholar 

  39. Lipton, R.: Dynamic brittle fracture as a small horizon limit of peridynamics. J. Elast. 117, 21–50 (2014)

    MathSciNet  MATH  Google Scholar 

  40. Lipton, R.: Cohesive dynamics and brittle fracture. J. Elast. 124(2), 143–191 (2016)

    MathSciNet  MATH  Google Scholar 

  41. Mengesha, T.: Nonlocal Korn-type characterization of Sobolev vector fields. Commun. Contemp. Math. 14(04), 1250028 (2012)

    MathSciNet  MATH  Google Scholar 

  42. Mengesha, T.: Fractional Korn and Hardy-type inequalities for vector fields in half space. Commun. Contemp. Math. 21(07), 1850055 (2019)

    MathSciNet  MATH  Google Scholar 

  43. Mengesha, T., Qiang, D.: The bond-based peridynamic system with Dirichlet-type volume constraint. Proc. R. Soc. Edinb. Sect. A: Math. 144(1), 161–186 (2014)

    MathSciNet  MATH  Google Scholar 

  44. Mengesha, T., Qiang, D.: Nonlocal constrained value problems for a linear peridynamic Navier equation. J. Elast. 116(1), 27–51 (2014)

    MathSciNet  MATH  Google Scholar 

  45. Mengesha, T., Qiang, D.: On the variational limit of a class of nonlocal functionals related to peridynamics. Nonlinearity 28(11), 3999 (2015)

    MathSciNet  MATH  Google Scholar 

  46. Mengesha, T., Qiang, D.: Characterization of function spaces of vector fields and an application in nonlinear peridynamics. Nonlinear Anal. 140, 82–111 (2016)

    MathSciNet  MATH  Google Scholar 

  47. Mengesha, T., Scott, J.M.: A fractional Korn-type inequality for smooth domains and a regularity estimate for nonlinear nonlocal systems of equations. arXiv preprintarXiv:2011.12407 (2020)

  48. Muñoz, J.: Local and nonlocal optimal control in the source. Mediterr. J. Math. 19(1), 1–24 (2022)

    MathSciNet  Google Scholar 

  49. Muñoz, J.: Generalized Ponce’s inequality. J. Inequal. Appl. 1, 11 (2021)

    MathSciNet  MATH  Google Scholar 

  50. Neitzel, I., Wick, T., Wollner, W.: An optimal control problem governed by a regularized phase-field fracture propagation model. SIAM J. Control Optim. 55(4), 2271–2288 (2017)

    MathSciNet  MATH  Google Scholar 

  51. Neitzel, I., Wick, T., Wollner, W.: An optimal control problem governed by a regularized phase-field fracture propagation model. Part II: the regularization limit. SIAM J. Control Optim. 57(3), 1672–1690 (2019)

    MathSciNet  MATH  Google Scholar 

  52. Otárola, E., Rankin, R., Salgado, A.J.: Maximum-norm a posteriori error estimates for an optimal control problem. Comput. Optim. Appl. 73(3), 997–1017 (2019)

    MathSciNet  MATH  Google Scholar 

  53. Parini, E., Salort, A.: Compactness and dichotomy in nonlocal shape optimization. Mathematische Nachrichten 293(11), 2208–2232 (2020)

    MathSciNet  MATH  Google Scholar 

  54. Ponce, A.C.: An estimate in the spirit of poincaré’s inequality. J. Eur. Math. Soc. 6(1), 1–15 (2004)

    MathSciNet  MATH  Google Scholar 

  55. Rindler, F.: Calculus of Variations, 1st edn. Springer, Berlin (2018)

    MATH  Google Scholar 

  56. Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary. Journal de Mathématiques Pures et Appliquées 101(3), 275–302 (2014)

    MathSciNet  MATH  Google Scholar 

  57. Scott, J., Mengesha, T.: A fractional Korn-type inequality. arXiv preprint arXiv:1808.02133 (2018)

  58. Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)

    MathSciNet  MATH  Google Scholar 

  59. Silling, S.A.: Linearized theory of peridynamic states. J. Elast. 99(1), 85–111 (2010)

    MathSciNet  MATH  Google Scholar 

  60. Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E.: Peridynamic states and constitutive modeling. J. Elast. 88(2), 151–184 (2007)

    MathSciNet  MATH  Google Scholar 

  61. Silling, S.A., Weckner, O., Askari, E., Bobaru, F.: Crack nucleation in a peridynamic solid. Int. J. Fract. 162(1), 219–227 (2010)

    MATH  Google Scholar 

  62. Silling, S.A., Askari, A.: Peridynamic model for fatigue cracking. Technical report, Sandia National Lab.(SNL-NM), Albuquerque, NM (United States) (2014)

  63. Silling, S.A., Bobaru, F.: Peridynamic modeling of membranes and fibers. Int. J. Non-Linear Mech. 40(2–3), 395–409 (2005)

    MATH  Google Scholar 

  64. Tartar, L.: An Introduction to Sobolev Spaces and Interpolation Spaces, vol. 3. Springer, Berlin (2007)

    MATH  Google Scholar 

  65. Tian, X., Qiang, D.: Asymptotically compatible schemes and applications to robust discretization of nonlocal models. SIAM J. Numer. Anal. 52(4), 1641–1665 (2014)

    MathSciNet  MATH  Google Scholar 

  66. Tian, X., Qiang, D., Gunzburger, M.: Asymptotically compatible schemes for the approximation of fractional Laplacian and related nonlocal diffusion problems on bounded domains. Adv. Comput. Math. 42(6), 1363–1380 (2016)

    MathSciNet  MATH  Google Scholar 

  67. Tröltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods, and Applications, vol. 112. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  68. Zhou, K., Qiang, D.: Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions. SIAM J. Numer. Anal. 48(5), 1759–1780 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

TM is supported by NSF grants DMS-1910180 and DMS-2206252. AJS and JMS have been supported by NSF grant DMS-2111228.

Funding

Tadele Mengesha is supported by National Science Foundation grants DMS-1910180 and DMS-2206252. Abner J. Salgado and Joshua M. Siktar have been supported by National Science Foundation grant DMS-2111228.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally in all stages of the research and preparation of this manuscript.

Corresponding author

Correspondence to Abner J. Salgado.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mengesha, T., Salgado, A.J. & Siktar, J.M. On the Optimal Control of a Linear Peridynamics Model. Appl Math Optim 88, 70 (2023). https://doi.org/10.1007/s00245-023-10045-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-023-10045-x

Keywords

Mathematics Subject Classification

Navigation