Skip to main content
Log in

Formation of Zn0.5Ni0.5Fe2O4 Nanocrystals in Conditions of Solution Combustion: Effect of the Type of Fuel on the Structure and Morphology

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Nickel-zinc ferrites, which have pronounced ferrimagnetic and semiconductor properties, can be used as promising magnetically controlled photocatalysts for the purification of aqueous media from organic pollutants. The value of the specific surface area largely affects the photocatalytic properties of the material; therefore, the possibility of its control and variation at the stage of synthesis is of great scientific and technical interest. In this study, nanocrystalline ferrite of the Zn0.5Ni0.5Fe2O4 composition is obtained under conditions of solution combustion using various types of organic fuel as the main factor affecting the formation of the specific surface area, and subsequent heat treatment in air at a temperature of 500°C for 2 h. The crystal structure, chemical composition, and morphology of Zn0.5Ni0.5Fe2O4 are studied by methods of X‑ray phase analysis, X-ray spectral microanalysis, and scanning electron microscopy. The values of the specific surface area of the synthesized nanopowders are calculated based on the method of liquid-phase adsorption from a Methylene Blue solution and the low-temperature adsorption-desorption of nitrogen. The results of the X‑ray phase analysis show that a single-phase nanocrystalline product with a spinel structure is formed, where the average crystallite size varies within 11–23 nm and is inversely related to the value of the specific surface area, respectively, after the reaction with succinic acid (39.1 m2/g) and with glycine (20.2 m2/g). It is established that the choice of the fuel largely affects the formation of nanocrystals and the specific surface area of the samples, and the approach used makes it possible to control its values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Martinson, K.D., Kozyritskaya, S.S., Panteleev, I.B., and Popkov, V.I., Low coercivity microwave ceramics based on LiZnMn ferrite synthesized via glycine–nitrate combustion, Nanosyst.: Phys. Chem. Math., 2019, vol. 10, no. 3, pp. 313–317.

    CAS  Google Scholar 

  2. Klumdoung, P., Hassadee, A., and Pankaew, P., Effect of nickel ferrite addition on characteristics of nanostructured nickel ferrite/hydroxyapatite ceramic, Mater. Today: Proc., 2019, vol. 17, pp. 1752–1760.

    Article  CAS  Google Scholar 

  3. Hajarpour, S., Honarbakhsh, Raouf, A., and Gheisari, K., Structural evolution and magnetic properties of nanocrystalline magnesium–zinc soft ferrites synthesized by glycine-nitrate combustion and process, J. Magn. Magn. Mater., 2014, vol. 363, pp. 21–25.

    Article  CAS  Google Scholar 

  4. Ombaka, L.M., Dillert, R., Robben, L., and Bahnemann, D.W., Evaluating carbon dots as electron mediators in photochemical and photocatalytic processes of NiFe2O4, APL Mater., 2020, vol. 8, no. 3, p. 031105.

    Article  CAS  Google Scholar 

  5. Zulfiqar Ahmed, M.N., Chandrasekhar, K.B., Jahagirdar, A.A., Nagabhushana, H., and Nagabhushana, B.M., Photocatalytic activity of nanocrystalline ZnO, α‑Fe2O3 and ZnFe2O4/ZnO, Appl. Nanosci., 2015, vol. 5, no. 8, pp. 961–968.

    Article  CAS  Google Scholar 

  6. Suppuraj, P., Parthiban, S., Swaminathan, M., and Muthuvel, I., Hydrothermal fabrication of ternary NrGO–TiO2/ZnFe2O4 nanocomposites for effective photocatalytic and fuel cell applications, Mater. Today: Proc., 2019, vol. 15, pp. 429–437.

    Article  CAS  Google Scholar 

  7. Tsvetkov, M.P., Milanova, M.M., Cherkezova-Zheleva, Z.P., Tsoncheva, T.S., Zaharieva, J.T., Abrashev, M.V., and Mitov, I.G., Catalytic and photocatalytic properties of zinc–nickel and ferrites, J. Chem. Sci., 2021, vol. 133, p. 24.

    Article  CAS  Google Scholar 

  8. Bohra, M., Alman, V., and Arras, R., Nanostructured ZnFe2O4: An exotic energy material, Nanomaterials, 2021, vol. 11, no. 5, p. 1286.

    Article  CAS  Google Scholar 

  9. Ashiq, M.N., Naz, F., Malana, M.A., Gohar, R.S., and Ahmad, Z., Role of Co–Cr substitution on the structural, electrical and magnetic properties of nickel nano-ferrites synthesized by the chemical co-precipitation method, Mater. Res. Bull., 2012, vol. 47, no. 3, pp. 683–686.

    Article  CAS  Google Scholar 

  10. Sunny, V., Kurian, P., Mohanan, P., Joy, P.A., and Anantharaman, M.R., A flexible microwave absorber based on nickel ferrite and nanocomposite, J. Alloys Compd., 2010, vol. 489, no. 1, pp. 297–303.

    Article  CAS  Google Scholar 

  11. Ichiyanagi, Y., Uehashi, T., and Yamada, S., Magnetic properties of Ni–Zn ferrite nanoparticles, Phys. Status Solidi C, 2004, vol. 1, no. 12, pp. 3485–3488.

    Article  CAS  Google Scholar 

  12. Wang, Z., Wang, J., Pan, Y., Liu, F., Lai, Y., Li, J., and Jiang, L., Preparation and characterization of a novel and recyclable InVO4/ZnFe2O4 composite for Methylene Blue removal by adsorption and visible-light photocatalytic degradation, Appl. Surf. Sci., 2020, vol. 501, p. 144006.

    Article  CAS  Google Scholar 

  13. Casbeer, E., Sharma, V.K., and Li, X.Z., Synthesis and photocatalytic activity of ferrites under visible light: A review, Sep. Purif. Technol., 2012, vol. 87, pp. 1–14.

    Article  CAS  Google Scholar 

  14. Choudhary, S., Bisht, A., and Mohapatra, S., Microwave-assisted synthesis of α-Fe2O3/ZnFe2O4/ZnO ternary hybrid nanostructures for photocatalytic applications, Ceram. Int., 2021, vol. 47, no. 3, pp. 3833–3841.

    Article  CAS  Google Scholar 

  15. Mady, A.H., Baynosa, M.L., Tuma, D., and Shim, J.J., Facile microwave-assisted green synthesis of Ag–ZnFe2O4@rGO nanocomposites for efficient removal of organic dyes under UV- and visible-light irradiation, Appl. Catal., B, 2017, vol. 203, pp. 416–427.

    Article  CAS  Google Scholar 

  16. Passi, M. and Pal, B., A review on CaTiO3 photocatalyst: Activity enhancement methods and photocatalytic applications, Powder Technol., 2021, vol. 388, pp. 274–304.

    Article  CAS  Google Scholar 

  17. Falak, P., Hassanzadeh-Tabrizi, S.A., and Saffar-Teluri, A., Synthesis, characterization, and magnetic properties of ZnO–ZnFe2O4 nanoparticles with high photocatalytic and activity, J. Magn. Magn. Mater., 2017, vol. 441, pp. 98–104.

    Article  CAS  Google Scholar 

  18. Kido, Y., Nakanishi, K., and Kanamori, K., Sol-gel synthesis of zinc ferrite-based xerogel monoliths with well-defined macropores, RSC Adv., 2013, vol. 3, no. 11, pp. 3661–3666.

    Article  CAS  Google Scholar 

  19. Costa, A.C.F.M., Fagury-Neto, E., Morelli, M.R., and Kiminami, R.H.G.A., Microwave synthesis of Ni–Zn ferrite powders, Mater. Sci. Forum, 2003, vol. 416–418, no. 1, pp. 705–710.

    Article  Google Scholar 

  20. Kumar, S., Singh, V., Aggarwal, S., Mandal, U.K., and Kotnala, R.K., Synthesis of nanocrystalline Ni0.5Zn0.5Fe2O4 ferrite and study of its magnetic behavior at different temperatures, Mater. Sci. Eng., B, 2010, vol. 166, no. 1, pp. 76–82.

    Article  CAS  Google Scholar 

  21. Hwang, C.C., Tsai, J.S., and Huang, T.H., Combustion synthesis of Ni–Zn ferrite by using glycine and metal nitrates—investigations of precursor homogeneity, product reproducibility, and reaction mechanism, Mater. Chem. Phys., 2005, vol. 93, nos. 2–3, pp. 330–336.

    Article  CAS  Google Scholar 

  22. Varma, A., Mukasyan, A.S., Rogachev, A.S., and Manukyan, K.V., Solution combustion synthesis of nanoscale materials, Chem. Rev., 2016, vol. 116, no. 23, pp. 14493–14586.

    Article  CAS  Google Scholar 

  23. Tugova, E.A. and Karpov, O.N., Glycine-nitrate combustion engineering of neodymium cobaltite nanocrystals, Rare Met., 2021, vol. 40, no. 7, pp. 1778–1784.

    Article  CAS  Google Scholar 

  24. Fan, G., Gu, Z., Yang, L., and Li, F., Nanocrystalline zinc ferrite photocatalysts formed using the colloid mill and hydrothermal technique, Chem. Eng. J., 2009, vol. 155, nos. 1–2, pp. 534–541.

    Article  CAS  Google Scholar 

  25. Novikov, V.A. and Firsova, I.A., The influence of the restorator in the reaction of solvent synthesis by burning on the combustion parameters and the properties of the produced products, Sovrem. Mater., Tekh. Tekhnol., 2017, vol. 6, no. 14, p. 93–99.

    Google Scholar 

  26. Gavrilova, D.A., Gavrilova, M.A., Kondrashkova, I.S., and Panteleev, I.B., Influence of the composition, structure and morphology of ZnxMn1 – xFe2O4 nanocrystals on the magnetic properties, Ogneup. Tekh. Keram., 2021, nos. 11–12, pp. 18–24.

  27. Akhtar, M.N., Saleem, M., and Khan, M.A., Al doped spinel and garnet nanostructured ferrites for microwave frequency C and X-band and applications, J. Phys. Chem. Solids, 2018, vol. 123, pp. 260–265.

    Article  CAS  Google Scholar 

  28. Hegyesi, N., Vad, R.T., and Pukanszky, B., Determination of the specific surface area of layered silicates by Methylene Blue adsorption: The role of structure, pH and layer charge, Appl. Clay Sci., 2017, vol. 146, pp. 50–55.

    Article  CAS  Google Scholar 

  29. Laboratornye raboty i zadachi po kolloidnoi khimii (Laboratory Works and Tasks in Colloid Chemistry), Frolov, Yu.G. and Grodskii, A.S., Eds., Moscow: Khimiya, 1986.

    Google Scholar 

  30. Amulya, M.A.S., Nagaswarupa, H.P., Kumar, M.R.A., Ravikumar, C.R., Prashantha, S.C., and Kusuma, K.B., Sonochemical synthesis of NiFe2O4 nanoparticles: Characterization and their photocatalytic and electrochemical applications, Appl. Surf. Sci. Adv., 2020, vol. 1, p. 100023.

    Article  Google Scholar 

  31. Sonu Sharma, S., Dutta, V., Raizada, P., Hosseini-Bandegharaei, A., Thakur, V., Nguyen, V.-H., Vanle, Q., and Singh, P., An overview of heterojunctioned ZnFe2O4 photocatalyst for enhanced oxidative water and purification, J. Environ. Chem. Eng., 2021, vol. 9, no. 5, p. 105812.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Gavrilova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrilova, M.A., Gavrilova, D.A., Kondrashkova, I.S. et al. Formation of Zn0.5Ni0.5Fe2O4 Nanocrystals in Conditions of Solution Combustion: Effect of the Type of Fuel on the Structure and Morphology. Glass Phys Chem 49, 394–401 (2023). https://doi.org/10.1134/S108765962360028X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S108765962360028X

Keywords:

Navigation