Skip to main content
Log in

Variability of Nuclear Microsatellite Loci and Population History of the Widespread Siberian fir Abies sibirica and the Tien Shan Endemic Semenov’s fir A. semenovii

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract

High variability of nuclear microsatellite markers determines their utility in describing the population structure, biogeography, and demographic history on species level. We used 17 microsatellite loci to study genetic diversity and historical demography of Siberian fir (Abies sibirica), one of the most important tree of Siberian taiga forests and its closely related Central Asian endemic species, Semenov’s fir (A. semenovii). Bayesian clustering, performed using the STRUCTURE program, revealed groups of A. sibirica populations, presumably corresponding to areas of colonization from several isolated sources – glacial refugia of taiga woods, located in the major mountain systems of Siberia and the Urals. The data obtained significantly supplemented the results of previous studies based on markers of nuclear, chloroplast and mitochondrial DNA. Taking into account the cluster corresponding to the populations along the Yenisei River, it is assumed that there is a refugium in this area related to the last glacial maximum and not identified on the basis of other data. An analysis of demographic history using Approximating Bayesian Computation (ABC) estimates the origin of the South Ural populations of Siberian fir as a result of migrations from Southern Siberia around 65 000 years ago, assuming a generation in fir of 100 years. In addition, ABC modeling confirmed the more recent origin of the North Ural populations of A. sibirica as a result of migration from the Baikal region and mixing with South Ural populations about 36000 BP. Also, using ABC the time of divergence of A. sibirica and A. semenovii was estimated at about 1.24 Ma and the population size of the latter about 30 times less than that of Siberian fir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Semerikova, S.A., Lascoux, M., and Semerikov, V.L., Nuclear and cytoplasmic genetic diversity reveals long-term population decline in Abies semenovii, an endemic fir of central Asia, Can. J. For. Res., 2012, vol. 42, pp. 2142–2152. https://doi.org/10.1139/cjfr-2012-0158

    Article  CAS  Google Scholar 

  2. Semerikova, S.A., Khrunyk, Y.Y., Lascoux M., and Semerikov, V.L., From America to Eurasia: A multigenomes history of the genus Abies, Mol. Phylogenet. Evol., 2018, vol. 125, pp. 14–28. https://doi.org/10.1016/j.ympev.2018.03.009

    Article  CAS  PubMed  Google Scholar 

  3. Larionova, A.Ya., Ekart, A.K., and Kravchenko, A.N., Genetic diversity and population structure of Siberian fir (Abies sibirica Ledeb.) in Middle Siberia, Russia, Eurasian J. For. Res., 2007, vol.10, no. 2, pp. 185–192.

    Google Scholar 

  4. Semerikova, S.A., and Semerikov, V.L., Genetic variation and population differentiation in Siberian fir Abies sibirica ledeb. inferred from allozyme markers, Russ. J. Genet., 2006, vol. 42, pp. 636–644. https://doi.org/10.1134/S1022795406060081

    Article  CAS  Google Scholar 

  5. Semerikova, S.A., and Semerikov, V.L., The diversity of chloroplast microsatellite loci in Siberian fir (Abies sibirica Ledeb.) and two Far East fir specie A. nephrolepis (Trautv.) Maxim. and A. sachalinensis Fr. Schmidt., Russ. J. Genet., 2007, vol. 43, pp. 1373–1381. https://doi.org/10.1134/S102279540712006X

    Article  CAS  Google Scholar 

  6. Semerikova, S.A., and Semerikov, V.L., Genetic variability of Siberian fir Abies sibirica Ledeb. inferred from AFLP markers, Russ. J. Genet., 2011, vol. 47, pp. 241–246. https://doi.org/10.1134/S1022795411020153

    Article  CAS  Google Scholar 

  7. Semerikov, V. L., Semerikova, S. A., Putintseva, Y. A., et al., Mitochondrial DNA in Siberian conifers indicates multiple postglacial colonization centers, Can. J. For. Res., 2019, vol. 49, pp. 875– 883. https://doi.org/10.1139/cjfr-2018-0498

    Article  Google Scholar 

  8. Naydenov, K., Senneville, S., Beaulieu, J., et al., Glacial vicariance in Eurasia: Mitochondrial DNA evidence from Scots pine for complex heritage involving genetically distinct refugia at midnorthern latitudes and in Asia Minor, BMC Evol. Biol., 2007, vol. 22, pp. 7–233. https://doi.org/10.1186/147121487233

    Article  Google Scholar 

  9. Pyhäjärvi, T., Salmela, M., and Savolainen, O., Colonozation routes of Pinus sylvestris inferred from distribution of mitochondrial DNA variation, Tree Genet. Genomes, 2008, vol. 4, pp. 247–254. https://doi.org/10.1007/s1129500701051

    Article  Google Scholar 

  10. Tollefsrud, M. M., Kissling, R., Gugerli, F., et al., Genetic consequences of glacial survival and postglacial colonization in Norway spruce: Combined analysis of mitochondrial DNA and fossil pollen, Mol. Ecol., 2008, vol. 17, pp. 4134–4150. https://doi.org/10.1111/j.1365294X.2008.03893.x

    Article  CAS  PubMed  Google Scholar 

  11. Semerikov, V.L., Semerikova, S.A., Polezhaeva, M.A., et al., Southern montane populations did not contribute to the recolonization of West Siberian Plain by Siberian larch (Larix sibirica): A rangewide analysis of cytoplasmic markers, Mol. Ecol., 2013, vol. 22, pp. 4958–4971. https://doi.org/10.1111/mec.12433

    Article  CAS  PubMed  Google Scholar 

  12. Hong, J.K., Lim, J., Lee, B.Y., and Kwak, M., Isolation and characterization of novel microsatellites for Abies koreana and A. nephrolepis (Pinaceae), Genet. Mol. Res., 2016, vol. 15, no. 2, p. 15027542. https://doi.org/10.4238/gmr.15027542

    Article  CAS  Google Scholar 

  13. Lian, C., Goto, S., and Hogetsu, T., Microsatellite markers for Sachalin fir (Abies sachalinensis Masters), Mol. Ecol. Notes, 2007, vol. 7, pp. 896–898. https://doi.org/10.1111/j.1471-8286.2007.01741.x

    Article  CAS  Google Scholar 

  14. Nihaenko, V.I., Intraspecific diversity and population differentiation of Siberian fir (Abies sibirica Ledeb.), Master’s Thesis, Krasnoyarsk: Sib. Fed. Univ., Inst. Fund. Biol. Biotechnol., Dep. Genomics Bioinf., 2020.

  15. Peakall, R., and Smouse, P.E., GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update, Bioinformatics, 2012, vol. 28, pp. 2537–2539. https://doi.org/10.1093/bioinformatics/bts460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rousset, F., GENEPOP’ 007: A complete re-implementation of the GENEPOP software for Windows and Linux, Mol. Ecol. Resour., 2008, vol. 8, pp. 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x

    Article  PubMed  Google Scholar 

  17. Van Oosterhout, C., Hutchinson, W.F., Wills, D.P., and Shipley, P., MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data, Mol. Ecol. Notes, 2004, vol. 4, pp. 535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x

    Article  CAS  Google Scholar 

  18. Pritchard, J.K., Stephens, M., and Donnelly, P., Inference of population structure using multilocus genotype data, Genetics, 2000, vol. 155, pp. 945–959. https://doi.org/10.1093/genetics/155.2.945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kopelman, N.M., Mayzel, J., Jakobsson, M., et al., CLUMPAK: A program for identifying clustering modes and packaging population structure inferences across K, Mol. Ecol. Resour., 2015, vol. 15, pp. 1179–1191. https://doi.org/10.1111/1755-0998.12387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Evanno, G., Regnaut, S., and Goudet, J., Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study, Mol. Ecol., 2005, vol. 14, no. 8, pp. 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  21. Earl, D.A. and VonHoldt, B.M., STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method, Conserv. Genet. Resour., 2012, vol. 4, pp. 359–361.https://doi.org/10.1007/s12686-011-9548-7

  22. Nei, M., Estimation of average heterozygosity and genetic distance from a small number of individuals, Genetics, 1978, vol. 83, pp. 583–590.

    Article  Google Scholar 

  23. Cornuet, J.M., Veyssier, J., Pudlo, P., et al., DIYABC v2.0: A software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data, Bioinformatics, vol. 30, pp. 1187–1189. https://doi.org/10.1093/bioinformatics/btt763

  24. Rousset, F., and Raymond, M., Testing heterozygote excess and deficiency, Genetics, 1995, vol. 140, pp. 1413–1419. https://doi.org/10.1093/genetics/140.4.1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Laukhin, S., and Shilova, G., Results of palynological analysis of Bedoba section (Late Pleistocene of Middle Siberia), Geologija, 2005, vol. 49, pp. 40–47.

    Google Scholar 

  26. Granoszewski, W., Demske, D., Nita, M., et al., Vegetation and climate variability during the Last Interglacial evidenced in the pollen record from Lake Baikal, Global Planet. Change, 2005, vol. 46, pp. 187–198. https://doi.org/10.1016/j.gloplacha.2004.09.017

    Article  Google Scholar 

  27. Borisova, O.K., Novenko, E.Y., Velichko, A.A., et al., Vegetation and climate changes during the Eemian and Early Weichselian in the Upper Volga region (Russia), Quat. Sci. Rev., 2007, vol. 26, pp. 2574–2585. https://doi.org/10.1016/j.quascirev.2007.07.001

    Article  Google Scholar 

  28. Shchetnikov, A.A., Bezrukova, E.V., Maksimov, F.E., et al., Environmental and climate reconstructions of the Fore-Baikal area during MIS 5-1: Multiproxy record from terrestrial sediments of the Ust-Oda section (Siberia, Russia), J. Asian Earth Sci., 2016, vol. 129, pp. 220–230. https://doi.org/10.1016/j.jseaes.2016.08.015

    Article  Google Scholar 

  29. Kobe, F., Leipe, C., Shchetnikov, A.A., et al., Not herbs and forbs alone: Pollen-based evidence for the presence of boreal trees and shrubs in Cis-Baikal (Eastern Siberia) derived from the Last Glacial Maximum sediment of Lake Ochaul, J. Quat. Sci., 2022, vol. 37, pp. 868–883. https://doi.org/10.1002/jqs.3290

    Article  Google Scholar 

  30. Panova, N.K., Trofimova, S.S., Antipina, T.G., et al., Holocene dynamics of vegetation and ecological conditions in the southern Yamal Peninsula according to the results of comprehensive analysis of a relict peat bog deposit, Russ. J. Ecol., 2010, vol.41, no. 1, pp. 20–27. https://doi.org/10.1134/s1067413610010042

    Article  Google Scholar 

  31. Arkhipov, S.A. and Volkova, V.S., Geologicheskaya istoria, landshafty i klimaty pleistotsena Zapadnoi Sibiri (Geological History, Landscapes and Climates of the Pleistocene of Western Siberia), Novosibirsk: Inst. Geol. Geophys. Sib. Otd. Ross. Akad. Nauk, 1994.

  32. Tsuda, Y., Chen, J., Stocks, M., et al., The extent and meaning of hybridization and introgression between Siberian spruce (Picea obovata) and Norway spruce (Picea abies): Cryptic refugia as stepping stones to the west?, Mol. Ecol., 2016, vol. 25, pp. 2773–2789. https://doi.org/10.1111/mec.13654

    Article  CAS  PubMed  Google Scholar 

  33. Shuvaev, D.N., Semerikov, V.L., Kuznetsova, G.V., and Putintseva, Y.A., Late Quaternary history of Siberian stone pine revealed by genetic and palaeoecological data, Tree Genet. Genomes, 2023, vol.19, p. 16. https://doi.org/10.1007/s11295-023-01592-z

    Article  Google Scholar 

  34. Tian, J., Wei, M., Cai, M., et al., Late Pliocene and early Pleistocene environmental evolution from the sporopollen record of core PL02 from the Yinchuan Basin, northwest China, Quat. Int., 2018, vol. 476, pp. 26–33. https://doi.org/10.1016/j.quaint.2018.03.009

    Article  Google Scholar 

  35. Clark, P.U., Archer, D., Pollard, D., et al., The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2, Quat. Sci. Rev., 2006, vol. 25, pp. 3150–3184. https://doi.org/10.1016/j.quascirev.2006.07.008

    Article  Google Scholar 

  36. Semerikov, V.L., Semerikova, S.A., Khrunyk, Y.Y., and Putintseva, Y.A., Sequence capture of mitochondrial genome with PCR-generated baits provides new insights into the biogeography of the genus Abies Mill., Plants, 2022, vol. 11, p. 762. https://doi.org/10.3390/plants11060762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Orlova, L., Firsov, G., Egorov A., and Volchanskaya, A., Abies semenovii in North West Russia: Taxonomy, ecology, cultivation and conservation, Dendrobiology, 2016, vol. 75, pp. 131–139. https://doi.org/10.12657/denbio.075.013

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to I.V. Tikhonova, S.B. Bikirov, G.A. Lazkov, O.Yu. Chekhlov, A.G. Bystrushkin for help in collecting fir samples, to D.N. Shuvaev for a fruitful discussion of the results and assistance in statistical data processing and to an anonymous reviewer for helpful comments.

Funding

The study was supported by the Russian Science Foundation, grant no. 22-24-00665, https://rscf.ru/project/22-24-00665/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Semerikov.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement of the welfare of humans or animals. The article does not contain any studies involving humans or animals in experiments performed by any of the authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semerikov, V.L., Semerikova, S.A. Variability of Nuclear Microsatellite Loci and Population History of the Widespread Siberian fir Abies sibirica and the Tien Shan Endemic Semenov’s fir A. semenovii. Russ J Ecol 54, 297–306 (2023). https://doi.org/10.1134/S1067413623040094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413623040094

Keywords:

Navigation