Skip to main content
Log in

Similar but Not Same: Impact of Structurally Similar Coformers on Co-crystallization with Telmisartan

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

The primary objective of this research work was to formulate crystal engineered multicomponent form of a BCS II drug, telmisartan (TEL) using crystal engineering approach to improve its aqueous solubility. Further, it was attempted to understand the co-crystallization specificity of TEL using a set of structurally similar coformers.

Methods

Preliminary structural assessment and feasibility of cocrystal formation was done using Cambridge structural database (CSD) and molecular electrostatic surface potential (MESP). The formation of cocrystals was confirmed by different characterization techniques such as differential scanning calorimetry (DSC), hot stage microscopy (HSM), Fourier transform infrared spectroscopy (FTIR), and powder x-ray diffraction (PXRD). Solubility and dissolution studies were performed in phosphate buffer 7.5 and 0.1 N HCl.

Results

TEL cocrystal with maleic acid (MA) was successfully obtained, and co-crystallization specificity was decoded at MESP. Cocrystal structure was also solved from PXRD data. A 4.27-fold and 2.8-fold improvement in the solubility was observed in phosphate buffer 7.5 and 0.1 N HCl.

Conclusion

A significant improvement in the aqueous solubility and dissolution profile was observed for the prepared cocrystals over the pure TEL. The present study was a small initiative to serve as a guidance for the rationalized screening and preparation of novel multicomponent solids with desired properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article.

Abbreviations

TEL:

Telmisartan

DSC:

Differential scanning calorimetry

HSM:

Hot stage microscopy

FTIR:

Fourier transform infrared spectroscopy

PXRD:

Powder x-ray diffraction

API:

Active pharmaceutical ingredient

MA:

Maleic acid

FA:

Fumaric acid

MAL:

Malonic acid

MAC:

Malic acid

SA:

Succinic acid

MESP:

Molecular electrostatic surface potential

DFT:

Density functional theory

TASC:

Thermal analysis by structural characterization

References

  1. Rohrer GS. Structure and bonding in crystalline materials. Cambridge University Press; 2001. https://doi.org/10.1017/CBO9780511816116.

  2. Vippagunta SR, Brittain HG, Grant DJ. Crystalline solids. Adv Drug Deliv Rev. 2001;48(1):3–26. https://doi.org/10.1016/S0169-409X(01)00097-7.

    Article  PubMed  CAS  Google Scholar 

  3. Braga D, Grepioni F. Crystal engineering, Kirk‐Othmer Encyclopedia of Chemical Technology; 2000.

  4. Desiraju GR. Crystal engineering: A holistic view. Angew Chem. 2007;46(44):8342–56. https://doi.org/10.1002/anie.200700534.

    Article  CAS  Google Scholar 

  5. Desiraju GR, Vittal JJ, Ramanan A. Crystal engineering: A textbook. World Sci; 2011.

  6. Desiraju GR. Supramolecular synthons in crystal engineering—A new organic synthesis. Angew Chem, Int Ed Engl. 1995;34(21):2311–27. https://doi.org/10.1002/anie.199523111.

    Article  CAS  Google Scholar 

  7. Nangia A, Desiraju GR. Supramolecular synthons and pattern recognition. Des Org Solids. 1998:57–95. https://doi.org/10.1007/3-540-69178-2_2.

  8. Schultheiss N, Newman A. Pharmaceutical cocrystals and their physicochemical properties. Cryst Growth Des. 2009;9(6):2950–67. https://doi.org/10.1021/cg900129f.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Qiao N, Li M, Schlindwein W, Malek N, Davies A, Trappitt G. Pharmaceutical cocrystals: An overview. Int J Pharm. 2011;419(1–2):1–1. https://doi.org/10.1016/j.ijpharm.2011.07.037.

    Article  PubMed  CAS  Google Scholar 

  10. Sokolov AN, Friščić T, MacGillivray LR. Enforced face-to-face stacking of organic semiconductor building blocks within hydrogen-bonded molecular cocrystals. J Am Chem Soc. 2006;128(9):2806–7. https://doi.org/10.1021/ja057939a.

    Article  PubMed  CAS  Google Scholar 

  11. Sekiya R, Kuroda R. Controlling stereoselectivity of solid-state photoreactions by co-crystal formation. Chem Comm. 2011;47(36):10097–9. https://doi.org/10.1039/C1CC13484A.

    Article  PubMed  CAS  Google Scholar 

  12. Millar DI, Maynard-Casely HE, Allan DR, Cumming AS, Lennie AR, Mackay AJ, Oswald ID, Tang CC, Pulham CR. Crystal engineering of energetic materials: Co-crystals of CL-20. CrystEngComm. 2012;14(10):3742–9. https://doi.org/10.1039/C2CE05796D.

    Article  CAS  Google Scholar 

  13. Guo C, Zhang H, Wang X, Xu J, Liu Y, Liu X, Huang H, Sun J. Crystal structure and explosive performance of a new CL-20/caprolactam cocrystal. J Mol Struct. 2013;1048:267–73. https://doi.org/10.1016/j.molstruc.2013.05.025.

    Article  CAS  Google Scholar 

  14. Nauha E, Ojala A, Nissinen M, Saxell H. Comparison of the polymorphs and solvates of two analogous fungicides—A case study of the applicability of a supramolecular synthon approach in crystal engineering. CrystEngComm. 2011;13(15):4956–64. https://doi.org/10.1039/C1CE05077J.

    Article  CAS  Google Scholar 

  15. Braga D, Chelazzi L, Grepioni F, Nanna S, Rubini K, Curzi M, Giaffreda S, Saxell HE, Bratz M, Chiodo T. Imazamox: A quest for polymorphic modifications of a chiral and racemic herbicide. Cryst Growth Des. 2014;14(3):1430–7. https://doi.org/10.1021/cg4019025.

    Article  CAS  Google Scholar 

  16. Good DJ, Rodriguez-Hornedo N. Solubility advantage of pharmaceutical cocrystals. Cryst Growth Des. 2009;9(5):2252–64. https://doi.org/10.1021/cg801039j.

    Article  CAS  Google Scholar 

  17. Babu NJ, Nangia A. Solubility advantage of amorphous drugs and pharmaceutical cocrystals. Cryst Growth Des. 2011;11(7):2662–79. https://doi.org/10.1021/cg200492w.

    Article  CAS  Google Scholar 

  18. Chadha R, Saini A, Arora P, Bhandari S. Pharmaceutical cocrystals: A novel approach for oral bioavailability enhancement of drugs. Crit Rev Ther Drug Carrier Syst. 2012;29(3). https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v29.i3.10

  19. Müllers KC, Paisana M, Wahl MA. Simultaneous formation and micronization of pharmaceutical cocrystals by rapid expansion of supercritical solutions (RESS). Pharm Res. 2015;32:702–13. https://doi.org/10.1007/s11095-014-1498-9.

    Article  PubMed  CAS  Google Scholar 

  20. Bhatt JA, Bahl D, Morris K, Stevens LL, Haware RV. Structure-mechanics and improved tableting performance of the drug-drug cocrystal metformin: Salicylic acid. Eur J Pharm Biopharm. 2020;153:23–35. https://doi.org/10.1016/j.ejpb.2020.05.031.

    Article  PubMed  CAS  Google Scholar 

  21. Bolla G, Nangia A. Pharmaceutical cocrystals: Walking the talk. Chem Comm. 2016;52(54):8342–60. https://doi.org/10.1039/C6CC02943D.

    Article  PubMed  CAS  Google Scholar 

  22. Cherukuvada S, Babu NJ, Nangia A. Nitrofurantoin–p-aminobenzoic acid cocrystal: Hydration stability and dissolution rate studies. J Pharm Sci. 2011;100(8):3233–44. https://doi.org/10.1002/jps.22546.

    Article  PubMed  CAS  Google Scholar 

  23. Sanphui P, Devi VK, Clara D, Malviya N, Ganguly S, Desiraju GR. Cocrystals of hydrochlorothiazide: Solubility and diffusion/permeability enhancements through drug–coformer interactions. Mol Pharm. 2015;12(5):1615–22. https://doi.org/10.1021/acs.molpharmaceut.5b00020.

    Article  PubMed  CAS  Google Scholar 

  24. Bajaj A, Rao MR, Pardeshi A, Sali D. Nanocrystallization by evaporative antisolvent technique for solubility and bioavailability enhancement of telmisartan. AAPS PharmSciTech. 2012;13:1331–40. https://doi.org/10.1208/s12249-012-9860-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Lepek P, Sawicki W, Wlodarski K, Wojnarowska Z, Paluch M, Guzik L. Effect of amorphization method on telmisartan solubility and the tableting process. Eur J Pharm Biopharm. 2013;83(1):114–21. https://doi.org/10.1016/j.ejpb.2012.09.019.

    Article  PubMed  CAS  Google Scholar 

  26. Chadha R, Bhandari S, Haneef J, Khullar S, Mandal S. Cocrystals of telmisartan: Characterization, structure elucidation, in vivo and toxicity studies. CrystEngComm. 2014;16(36):8375–89. https://doi.org/10.1039/C4CE00797B.

    Article  CAS  Google Scholar 

  27. Ganesh M, Ubaidulla U, Rathnam G, Jang HT. Chitosan-telmisartan polymeric cocrystals for improving oral absorption: In vitro and in vivo evaluation. Int J Biol Macromol. 2019;131:879–85. https://doi.org/10.1016/j.ijbiomac.2019.03.141.

    Article  PubMed  CAS  Google Scholar 

  28. Kundu S, Kumari N, Soni SR, Ranjan S, Kumar R, Sharon A, Ghosh A. Enhanced solubility of telmisartan phthalic acid cocrystals within the pH range of a systemic absorption site. ACS Omega. 2018;3(11):15380–8. https://doi.org/10.1021/acsomega.8b02144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Haneef J, Arora P, Chadha R. Implication of coformer structural diversity on cocrystallization outcomes of telmisartan with improved biopharmaceutical performance. AAPS PharmSciTech. 2020;21:1–1. https://doi.org/10.1208/s12249-019-1559-9.

    Article  CAS  Google Scholar 

  30. Haneef J, Chadha R. Drug-drug multicomponent solid forms: cocrystal, coamorphous and eutectic of three poorly soluble antihypertensive drugs using mechanochemical approach. AAPS PharmSciTech. 2017;18:2279–90. https://doi.org/10.1208/s12249-016-0701-1.

    Article  PubMed  CAS  Google Scholar 

  31. Musumeci D, Hunter CA, Prohens R, Scuderi S, McCabe JF. Virtual cocrystal screening. Chem Sci. 2011;2(5):883–90. https://doi.org/10.1039/C0SC00555J.

    Article  CAS  Google Scholar 

  32. Dash SG, Thakur TS. Computational screening of multicomponent solid forms of 2-aryl-propionate class of NSAID, zaltoprofen, and their experimental validation. Cryst Growth Des. 2020;21(1):449–61. https://doi.org/10.1021/acs.cgd.0c01278.

    Article  CAS  Google Scholar 

  33. Neese F. The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci. 2012;2(1):73–8. https://doi.org/10.1002/wcms.81.

    Article  CAS  Google Scholar 

  34. Neese F. Software update: The ORCA program system, version 4.0. Wiley Interdiscip Rev Comput Mol Sci. 2018;8(1):e1327. https://doi.org/10.1002/wcms.1327.

  35. Lu T, Chen F. Multiwfn: A multifunctional wavefunction analyzer. J Comput Chem. 2012;33(5):580–92. https://doi.org/10.1002/jcc.22885.

    Article  PubMed  CAS  Google Scholar 

  36. Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. J Mol Graph. 1996;14(1):33–8. https://doi.org/10.1016/0263-7855(96)00018-5.

    Article  PubMed  CAS  Google Scholar 

  37. Turner MJ, McKinnon JJ, Wolff SK, Grimwood DJ, Spackman PR, Jayatilaka D, Spackman MA. CrystalExplorer17.

  38. Neumann MA. X-Cell: A novel indexing algorithm for routine tasks and difficult cases. J Appl Crystallogr. 2003;36(2):356–65.https://doi.org/10.1107/S0021889802023348.

  39. Dinnebier RE, Sieger P, Nar H, Shankland K, David WI. Structural characterization of three crystalline modifications of telmisartan by single crystal and high-resolution X-ray powder diffraction. J Pharm Sci. 2000;89(11):1465–79. https://doi.org/10.1002/1520-6017.

    Article  PubMed  CAS  Google Scholar 

  40. Ramos JJ, Diogo HP. Thermal behavior and molecular mobility in the glassy state of three anti-hypertensive pharmaceutical ingredients. RSC Adv. 2017;7(18):10831–40. https://doi.org/10.1039/C7RA00298J.

    Article  Google Scholar 

  41. Etter MC. Encoding and decoding hydrogen-bond patterns of organic compounds. Acc Chem Res. 1990;23(4):120–6. https://doi.org/10.1021/ar00172a005.

    Article  CAS  Google Scholar 

  42. Sherman AM, Geiger AC, Smith CJ, Taylor LS, Hinds J, Stroud PA, Simpson GJ. Stochastic differential scanning calorimetry by nonlinear optical microscopy. Anal Chem. 2019;92(1):1171–8.

    Article  PubMed  Google Scholar 

  43. Wang N, Huang X, Chen L, Yang J, Li X, Ma J, Bao Y, Li F, Yin Q, Hao H. Consistency and variability of cocrystals containing positional isomers: The self-assembly evolution mechanism of supramolecular synthons of cresol–piperazine. IUCrJ. 2019;6(6):1064–73. https://doi.org/10.1107/S2052252519012363.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Tomar D, Lodagekar A, Gunnam A, Allu S, Chavan RB, Tharkar M, Ajithkumar TG, Nangia AK, Shastri NR. The effects of cis and trans butenedioic acid on the physicochemical behavior of lumefantrine. CrystEngComm. 2022;24(1):156–68. https://doi.org/10.1039/D0CE01709D.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Nanda.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2608 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Nanda, A. Similar but Not Same: Impact of Structurally Similar Coformers on Co-crystallization with Telmisartan. J Pharm Innov 18, 1954–1965 (2023). https://doi.org/10.1007/s12247-023-09759-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-023-09759-w

Keywords

Navigation