Skip to main content
Log in

Secular Orbital Dynamics of Exoplanet Satellite Candidates

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

The stability of the secular orbital dynamics of a number of potentially existing satellites of exoplanets has been analyzed. The secular dynamics of possible satellites (“exomoons”) of the planets KOI-268.01, Kepler-1000b, and Kepler-1442b have been found to be stable. The possible values of the exomoon orbital parameters for these systems have been estimated. The dynamics of the satellites discovered around the planets Kepler-1625b and Kepler-1708b from the analysis of observations are considered. It has been found that the semimajor axis of the orbit of the moon of the planet Kepler-1625b can range from 5 to 25 planetary radii. It has been shown that the solution available for the satellites of the planet Kepler-1708b (Kipping et al., 2022) corresponds to a stable orbit of the satellites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Awiphan, S. and Kerins, E., The detectability of habitable exomoons with Kepler, Mon. Not. R. Astron. Soc., 2013, vol. 432, pp. 2549–2561.

    Article  ADS  Google Scholar 

  2. Benettin, G., Galgani, L., and Strelcyn, J.-M., Kolmogorov entropy and numerical experiments, Phys. Rev. A, 1976, vol. 14, no. 6, pp. 2338–2345.

    Article  ADS  Google Scholar 

  3. Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J.-M., Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems—A method for computing all of them. I—theory. II—numerical application, Meccanica, 1980, vol. 15, pp. 9–30.

    Article  ADS  Google Scholar 

  4. von Bremen, H.F., Udwadia, F.E., and Proskurowski, W., An efficient QR based method for the computation of Lyapunov exponents, Phys. D (Amsterdam), 1997, vol. 101, pp. 1–16.

    Article  MathSciNet  Google Scholar 

  5. Cassese, B. and Kipping, D., Kepler-1708 b-i is likely undetectable with HST, Mon. Not. R. Astron. Soc., 2022, vol. 516, pp. 3701–3708.

    Article  ADS  Google Scholar 

  6. Domingos, R.C., Winter, O.C., and Yokoyama, T., Stable satellites around extrasolar giant planets, Mon. Not. R. Astron. Soc., 2006, vol. 373, pp. 1227–1234.

    Article  ADS  Google Scholar 

  7. Emel’yanov, N.V., Dinamika estestvennykh sputnikov planet na osnove nablyudenii (Dynamics of Natural Satellites of Planets Based on Observations), Fryazino: Vek 2, 2019.

  8. Fox, C. and Wiegert, P., Exomoon candidates from transit timing variations: eight Kepler systems with TTVs explainable by photometrically unseen exomoons, Mon. Not. R. Astron. Soc., 2021, vol. 501, pp. 2378–2393.

    Article  ADS  Google Scholar 

  9. Hairer, E., Norsett, S.P., and Wanner, G., Solving Ordinary Differential Equations. I. Nonstiff Problems, Berlin: Springer-Verlag, 1993.

    Google Scholar 

  10. Heller, R., Exomoon habitability constrained by energy flux and orbital stability, Astron. Astrophys., 2012, vol. 545.

  11. Heller, R., Detecting extrasolar moons akin to Solar System satellites with an orbital sampling effect, Astrophys. J., 2014, vol. 787, p. 14.

    Article  ADS  Google Scholar 

  12. Heller, R., The nature of the giant exomoon candidate Kepler-1625 b-i2018, Astron. Astrophys., 2018, vol. 610, p. A39.

    Article  ADS  Google Scholar 

  13. Heller, R., Williams, D., Kipping, D., Limbach, M.A., Turner, E., Greenberg, R., Sasaki, T., Bolmont, É., Grasset, O., Lewis, K., Barnes, R., and Zuluaga, J.I., Formation, habitability, and detection of extrasolar moons, Astrobiology, 2014, vol. 14, no. 9, pp. 798–835.

    Article  ADS  Google Scholar 

  14. Heller, R., Rodenbeck, K., and Bruno, G., An alternative interpretation of the exomoon candidate signal in the combined Kepler and Hubble data of Kepler-1625, Astron. Astrophys., 2019, vol. 624, p. A95.

    Article  ADS  Google Scholar 

  15. Holman, M. and Wiegert, P., Long-term stability of planets in binary systems, Astron. J., 1999, vol. 117, no. 1, pp. 621–628.

    Article  ADS  Google Scholar 

  16. Kaltenegger, L., Characterizing habitable exomoons, Astrophys. J., 2010, vol. 712, no. 2, pp. L125–L130.

    Article  ADS  Google Scholar 

  17. Kaltenegger, L., How to charañterize habitable worlds and signs of life, Annu. Rev. Astron. Astrophys., 2017, vol. 55, no. 1, pp. 433–485.

    Article  ADS  Google Scholar 

  18. Kipping, D.M., Transit timing effects due to an exomoon, Mon. Not. R. Astron. Soc., 2009, vol. 392, no. 1, pp. 181–189.

    Article  ADS  Google Scholar 

  19. Kipping, D.M., LUNA: An algorithm for generating dynamic planet-moon transits, Mon. Not. R. Astron. Soc., 2011, vol. 416, pp. 689–709.

    ADS  Google Scholar 

  20. Kipping, D.M., An independent analysis of the six recently claimed exomoon candidates, Astrophys. J. Lett., 2020, vol. 900, no. 2, p. L44.

    Article  ADS  Google Scholar 

  21. Kipping, D.M., Bakos, G.Á., Buchhave, L.A., Nesvorný, D., and Schmitt, A., The hunt for exomoons with Kepler (HEK). I. Description of a new observational project, Astrophys. J., 2012, vol. 750, p. 115.

    Article  ADS  Google Scholar 

  22. Kipping, D.M., Forgan, D., Hartman, J., Nesvorný, D., Bakos, G.A., Schmitt, A., and Buchhave, L., The hunt for exomoons with Kepler (HEK). III. The first search for an exomoon around a habitable-zone planet, Astrophys. J., 2013a, vol. 777, no. 2, p. 134.

    Article  ADS  Google Scholar 

  23. Kipping, D.M., Hartman, J., Buchhave, L.A., Schmitt, A.R., Bakos, G.A., and Nesvorný, D., The hunt for exomoons with Kepler (HEK). II. Analysis of seven viable satellite-hosting planet candidates, Astrophys. J., 2013b, vol. 770, no. 2, p. 101.

    Article  ADS  Google Scholar 

  24. Kipping, D.M., Nesvorný, D., Buchhave, L.A., Hartman, J., Bakos, G.A., and Schmitt, A.R., The hunt for exomoons with Kepler (HEK). IV. A search for moons around eight M dwarfs, Astrophys. J., 2014, vol. 784, no. 1. p. 28.

    Article  ADS  Google Scholar 

  25. Kipping, D.M., Schmitt, A.R., Huang, X., Torres, G., Nesvorný, D., Buchhave, L.A., Hartman, J., and Bakos, G.A., The hunt for exomoons with Kepler (HEK). V. A survey of 41 planetary candidates for exomoons, Astrophys. J., 2015, vol. 813, no. 1, p. 14.

    Article  ADS  Google Scholar 

  26. Kipping, D., Bryson, S., Burke, C., Christiansen, J., Hardegree-Ullman, K., Quarles, B., Hansen, B., Szulágyi, J., and Teachey, A., An exomoon survey of 70 cool giant exoplanets and the new candidate Kepler-1708 b-i, Nat. Astron., 2022, vol. 6, pp. 367–380.

    Article  ADS  Google Scholar 

  27. Lichtenberg and Lieberman, Regular and Stochastic Motion, New York: Springer, 1983.

    Book  Google Scholar 

  28. Martin, D.V., Fabrycky, D.C., and Montet, B.T., Transits of in lined exomoons—hide and seek and an application to Kepler-1625, Astrophys. J., 2019, vol. 875, no. 2, p. L25.

    Article  ADS  Google Scholar 

  29. Martinez-Rodríguez, H., Caballero, J.A., Cifuentes, C., Piro, A.L., and Barnes, R., Exomoons in the habitable zones of M dwarfs, Astrophys. J., 2019, vol. 887, no. 2, p. 261.

    Article  ADS  Google Scholar 

  30. Melnikov, A.V., Numerical instruments for the analysis of secular dynamics of exoplanetary systems, Sol. Syst. Res., 2018, vol. 52, no. 5, pp. 417–425. https://doi.org/10.1134/S0038094618050064

    Article  ADS  Google Scholar 

  31. Melnikov, A.V. and Shevchenko, I.I., The stability of the rotational motion of nonspherical natural satellites with respect to tilting the axis of rotation, Sol. Syst. Res., 1998, vol. 32, no. 6, pp. 480–490.

    ADS  Google Scholar 

  32. Melnikov, A.V. and Shevchenko, I.I., Rotational dynamics and evolution of planetary satellites in the solar and exoplanetary systems, Sol. Syst. Res., 2022, vol. 56, no. 1, pp. 1–22. https://doi.org/10.1134/S003809462201004X

    Article  ADS  Google Scholar 

  33. Moraes, R.A. and Vieira Neto, E., Exploring formation scenarios for the exomoon candidate Kepler-1625b I, Mon. Not. R. Astron. Soc., 2020, vol. 495, no. 4, pp. 3763–3776.

    Article  ADS  Google Scholar 

  34. Moraes, R.A., Borderes-Motta, G., Winter, O.C., and Monteiro, J., On the stability of additional moons orbiting Kepler-1625 b, Mon. Not. R. Astron. Soc., 2022, vol. 510, no. 2, pp. 2583–2596.

    Article  ADS  Google Scholar 

  35. Nicholson, P.D., Ćuk, M., Sheppard, S.S., Nesvorný, D., and Johnson, T.V., Irregular satellites of the giant planets, The Solar System beyond Neptune, Barucci, M.A., Boehnhardt, H., Cruikshank, D.P., and Morbidelli, A., Eds., Tucson: Univ. Arizona Press, 2008, pp. 411–424.

    Google Scholar 

  36. Rosario-Franco, M., Quarles, B., Musielak, Z.E., and Cuntz, M., Orbital stability of exomoons and submoons with applications to Kepler 1625b-I, Astron. J., 2020, vol. 159, no. 6, p. 260.

    Article  ADS  Google Scholar 

  37. Saha, S. and Sengupta, S., Transit light curves for exomoons: Analytical formalism, Astrophys. J., 2022, vol. 936, no. 1, p. 2.

    Article  ADS  Google Scholar 

  38. Shevchenko, I.I. and Kouprianov, V.V., On the chaotic rotation of planetary satellites: The Lyapunov spectra and the maximum Lyapunov exponents, Astron. Astrophys., 2002, vol. 394, pp. 663–674.

    Article  ADS  Google Scholar 

  39. Sucerquia, M., Alvarado-Montes, J.A., Zuluaga, J.I., Cuello, N., and Giuppone, C., Ploonets: Formation, evolution, and detectability of tidally detached exomoons, Mon. Not. R. Astron. Soc., 2019, vol. 489, pp. 2313–2322.

    Article  ADS  Google Scholar 

  40. Sucerquia, M., Ramírez, V., Alvarado-Montes, J.A., and Zuluaga, J.I., Can lose-in giant exoplanets preserve detectable moons?, Mon. Not. R. Astron. Soc., 2020, vol. 492, no. 3, pp. 3499–3508.

    Article  ADS  Google Scholar 

  41. Sucerquia, M., Alvarado-Montes, J.A., Bayo, A., Cuadra, J., Cuello, N., Giuppone, C.A., Montesinos, M., Olofsson, J., Schwab, C., Spitler, L., and Zuluaga, J.I., Cronomoons: Origin, dynamics, and light-curve features of ringed exomoons, Mon. Not. R. Astron. Soc., 2022, vol. 512, no. 1, pp. 1032–1044.

    Article  ADS  Google Scholar 

  42. Teachey, A., The exomoon corridor for multiple moon systems, Mon. Not. R. Astron. Soc., 2021, vol. 506, no. 2, pp. 2104–2121.

    Article  ADS  Google Scholar 

  43. Teachey, A. and Kipping, D.M., Evidence for a large exomoon orbiting Kepler-1625b, Sci. Adv., 2018, vol. 4, no. 10, p. Eaav1784.

  44. Teachey, A., Kipping, D.M., and Schmitt, A.R., HEK. VI. On the dearth of Galilean analogs in Kepler, and the exomoon candidate Kepler-1625b I, Astron. J., 2018, vol. 155, no. 1, p. 36.

    Article  ADS  Google Scholar 

  45. Teachey, A., Kipping, D., Burke, C.J., Angus, R., and Howard, A.W., Loose ends for the exomoon candidate host Kepler-1625b, Astron. J., 2020, vol. 159, no. 4, p. 142.

    Article  ADS  Google Scholar 

  46. Tjoa, J.N.K.Y., Mueller, M., and van der Tak, F.F.S., The subsurface habitability of small, icy exomoons, Astron. Astrophys., 2020, vol. 636. p. A50.

    Article  ADS  Google Scholar 

  47. Tokadjian, A. and Piro, A.L., Probing planets with exomoons: The cases of Kepler-1708 b and Kepler-1625 b, Astrophys. J. Lett., 2022, vol. 929, no. 1, p. L2.

    Article  ADS  Google Scholar 

  48. Williams, D.M., Kasting, J.F., and Wade, R.A., Habitable moons around extrasolar giant planets, Nature, 1997, vol. 385, no. 6613, pp. 234–236.

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to the reviewer for the useful remarks.

Funding

The study was supported by grant no. 075-15-2020-780 “Theoretical and experimental studies of the formation and evolution of extrasolar planetary systems and characteristics of exoplanets” of the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Melnikov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melnikov, A.V. Secular Orbital Dynamics of Exoplanet Satellite Candidates. Sol Syst Res 57, 380–387 (2023). https://doi.org/10.1134/S0038094623030061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094623030061

Keywords:

Navigation