Skip to main content
Log in

Influence of the leading-edge bluntness radius of a plate on the response of flat-plate boundary layer to an N-wave at Mach number M = 2

  • Published:
Thermophysics and Aeromechanics Aims and scope

Abstract

An experimental study of the influence of the leading-edge radius of a blunt plate on the response of boundary layer on this plate to an N-wave at Mach 2 was carried out. Three flat-plate models with different leading-edge bluntness radii, r = 0.05, 0.5, and 2.5 mm, were used in the experiments. The oncoming-flow disturbances were created using a generator provided on the sidewall of the test section of the T-325 wind tunnel of ITAM SB RAS. It is found that behind the N-wave in the oncoming flow, there forms an extended region with an increased level of flow pulsations whose spectrum contains the amplitudes increased both in low-frequency and high-frequency range of the spectrum compared to the undisturbed freestream. It was shown that, under experimental conditions, the flow non-uniformity generated by the N-wave can exert a greater influence on the flat-plate boundary layer laminar-turbulent transition with increasing leading-edge bluntness radius.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. S.A. Gaponov and A.A. Maslov, Development of Perturbations in Compressible Flows, Novosibirsk, Nauka, 1980.

    Google Scholar 

  2. S.R. Pate, Radiated aerodynamic noise effects on boundary-layer transition in supersonic and hypersonic wind tunnels, AIAA Paper, 1969, Vol. 7, No. 3, P. 450–457.

    Article  ADS  Google Scholar 

  3. J. Laufer and T. Vrebalovich, Stability and transition of a supersonic laminar boundary layer on an insulated flat plate, J. Fluid Mech., 1960, Vol. 9, P. 257–299.

    Article  ADS  MATH  Google Scholar 

  4. J. Laufer, Aerodynamic noise in supersonic wind tunnels, Aerospace Sci., 1961, Vol. 28, No. 9, P. 685–692.

    Article  MATH  Google Scholar 

  5. J.M. Kendall, Wind-tunnel experiments relating to supersonic and hypersonic boundary-layer transition, AIAA J., 1975, Vol. 13, No. 3, P. 290–299.

    Article  ADS  Google Scholar 

  6. V.A. Lebiga, A.A. Maslov, and V.G. Pridanov, Experimental investigation of the stability of supersonic boundary layer on a flat insulated plate, Archives Mech., 1979, Vol. 31, No. 3, P. 397–405.

    Google Scholar 

  7. L.M. Mack, Linear stability theory and the problem of supersonic boundary-layer transition, AIAA J., 1975, Vol. 13, No. 3, P. 278–289.

    Article  ADS  Google Scholar 

  8. A.V. Vaganov, Yu.G. Yermolaev, G.L. Kolosov, A.D. Kosinov, A.V. Panina, and N.V. Semionov, On the effect of the incident Mach wave on the pulsation level in boundary layer of the plane delta wing, Bull. of NSU, Ser. Physics, 2014, Vol. 9, No. 1, P. 29–38.

    Google Scholar 

  9. A.V. Vaganov, Yu.G. Yermolaev, G.L. Kolosov, A.D. Kosinov, A.V. Panina, and N.V. Semionov, and A.A. Yatskikh, Impact of incident Mach wave on supersonic boundary layer, Thermophysics and Aeromechanics, 2016, Vol. 23, No. 1, P. 43–48.

    Article  ADS  Google Scholar 

  10. L.V. Afanasev, A.D. Kosinov, A.A. Yatskikh, V.L. Kocharin, N.V. Semionov, and Yu.G. Yermolaev, Cross-correlation measurement of disturbance initiated by weak shock wave in the flat plate boundary layer with blunt leading edge at Mach 2, AIP Conf. Proc., 2021, Vol. 2351, No. 1, P. 040035–1–040035–5.

    Article  Google Scholar 

  11. M. Piterimova, A. Kosinov, N. Semionov, A. Yatskikh, Yu. Yermolaev, and V. Kocharin, Experimental study of excitation and evolution of contrarotating longitudinal vortices in a boundary layer of a flat plate at M = 2, AIP Conf. Proc., 2020, Vol. 2288, P. 030034–1–030034–5.

    Article  Google Scholar 

  12. A.D. Kosinov, N.V. Semionov, A.A. Yatskikh, Yu.G. Yermolaev, and M.V. Piterimova, Experimental study of the effect of weak shock waves on supersonic boundary layer of flat plate with blunt leading edge at Mach number 2, Siberian J. Phys., 2018, Vol. 13, No. 3, P. 16–23.

    Google Scholar 

  13. V.L. Kocharin, N.V. Semionov, A.D. Kosinov, Yu.G. Yermolaev, and A.A. Yatskikh, Experimental study of effect of a couple of weak shock waves on boundary layer of the blunt flat plate, AIP Conf. Proc., 2018, Vol. 2027, P. 040026–1–040026–5.

    Article  Google Scholar 

  14. Yu.G. Yermolaev, A.D. Kosinov, V.L. Kocharin, N.V. Semionov, and A.A. Yatskikh, Experimental investigation of the weak shock wave influence on the boundary layer of a flat blunt plate at the Mach number 2.5, Fluid Dynamics, 2019, No. 2, P. 112–118.

  15. V.L. Kocharin, L.V. Afanasev, A.D. Kosinov, A.A. Yatskikh, N.V. Semionov, and Yu.G. Yermolaev, Experimental investigation of effect of an external wave on supersonic boundary layer of the blunt flat plate, AIP Conf. Proc. 2019, Vol. 2125, P. 030104–1–030104–6.

    Article  Google Scholar 

  16. V.L. Kocharin, A.D. Kosinov, Yu.G. Yermolaev, and N.V. Semionov, Experimental study of weak shock waves influence on the supersonic boundary layer of the flat plate model, EPJ Web of Conf., 2019, Vol. 196, No. 00018, P. 1–4.

    Google Scholar 

  17. V.L. Kocharin, A.A. Yatskikh, A.D. Kosinov, Yu.G. Yermolaev, and N.V. Semionov, Experimental study of the impact of the weak shock wave action on the boundary layer at Mach number 2.5, Siberian J. Phys., 2019, Vol. 14, No. 2, P. 46–55.

    Article  Google Scholar 

  18. V.L. Kocharin, A.A. Yatskikh, D.S. Prishchepova, A.V. Panina, Yu.G. Yermolaev, A.D. Kosinov, N.V. Semionov, and L.V. Afanasev, Experimental study of heat transfer in the boundary layer of a flat plate with the impact of weak shock waves on the leading edge, AIP Conf. Proc., 2020, Vol. 2288, P. 030014–1–030014–4.

    Article  Google Scholar 

  19. V.L. Kocharin, A.A. Yatskikh, D.S. Prishchepova, A.V. Panina, Yu.G. Yermolaev, A.D. Kosinov, N.V. Semionov, and L.V. Afanasev, Experimental study of the impact of N-wave on heat transfer in a boundary layer of a flat plate at the Mach number 2, AIP Conf. Proc., 2021, Vol. 2351, No. 1, P. 040036–1–040036–4.

    Article  Google Scholar 

  20. M.V. Piterimova, A.D. Kosinov, N.V. Semionov, A.A. Yatskikh, V.L. Kocharin, and Yu.G. Yermolaev, Experimental study of the effect of a pair of weak shock waves on the laminar-turbulent transition in the boundary layer on a flat plate at Mach number 2, Siberian J. Phys., 2022, Vol. 17, No. 2, P. 30–40.

    Article  Google Scholar 

  21. V.L. Kocharin, A.D. Kosinov, A.A. Yatskikh, L.V. Afanasev, Yu.G. Yermolaev, and N.V. Semionov, The experimental study of the weak shock wave action on the boundary layer of the sweep flat plate, J. Phys.: Conf. Series, 2019, Vol. 1404, P. 012083–1–012083–4.

    Google Scholar 

  22. V.L. Kocharin, A.D. Kosinov, A.A. Yatskikh, Yu.G. Yermolaev, N.V. Semionov, M.V. Piterimova, S.G. Shevelkov, and O.P. Minin, The impact of weak shock waves on the flow in the boundary layer of a flat plate with a variable sweep angle of the leading edge, Thermophysics and Aeromechanics, 2019, Vol. 26, No. 6, P. 803–809.

    Article  ADS  Google Scholar 

  23. D. Khotyanovsky, A. Kudryavtsev, and A. Kosinov, Numerical study of the interaction of the N-wave with the plate leading edge in the supersonic stream, AIP Conf. Proc., 2017, Vol. 1893, P. 030051–1–030051–6.

    Article  Google Scholar 

  24. H.Q. Dinh, I.V. Egorov, and A.V. Fedorov, Interaction of Mach waves and boundary layer at a supersonic flow over a plate with a sharp leading edge, TsAGI Science J., 2017, Vol. 48, No. 4, P. 317–329.

    Article  Google Scholar 

  25. H.Q. Dinh, I.V. Egorov, and A.V. Fedorov, Mach wave effect on laminar-turbulent transition in supersonic flow over a flat plate, Fluid Dynamics, 2018, No. 5, P. 690–701.

  26. I.V. Egorov, H.Q. Dinh, N.K. Nguyen, and N.V. Palchekovskaya, Numerical simulation of the interaction of a Mach wave and a supersonic boundary layer on a flat plate with a sharp leading edge, TsAGI Science J., 2021, Vol. 52, No. 3, P. 18–28.

    Google Scholar 

  27. I.V. Egorov, N.H. Duong, N.K. Nguyen, and N.V. Palchekovskaya, Numerical simulation of the influence of a Mach wave on the laminar-turbulent transition in a supersonic boundary layer, Doklady Physics, ser. Technical Sciences, 2022, Vol. 67, Iss. 5, p.144–147.

    Article  Google Scholar 

  28. H.Q. Dinh, A.T. Nguyen, I.V. Egorov, and N.H. Duong, The study of mach waves generated by a roughness element, Inter. J. Aeronaut. Space Sci., 2022, Vol. 23, P. 511–520.

    Article  ADS  Google Scholar 

  29. A.A. Yatskikh, A.D. Kosinov, N.V. Semionov, B.V. Smorodsky, Yu.G. Ermolaev, and G.L. Kolosov, Investigation of laminar-turbulent transition of supersonic boundary layer by scanning constant temperature hot-wire anemometer, AIP Conf. Proc., 2018, Vol. 2027, P. 040041.

    Article  Google Scholar 

  30. A.D. Kosinov, N.V. Semionov, and Yu.G. Yermolaev, Disturbances in the test section of T-325 supersonic wind tunnel, Novosibirsk, Preprint No. 6–99, ITAM SB RAS, 1999.

  31. A.D. Kosinov and N.V. Semionov, The laminar-turbulent transition experiments in supersonic boundary layers, AIP Conf. Proc., 2019, Vol. 2125, P. 030105–1–030105–5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Kosinov.

Additional information

This study was carried out under the support from the Russian Science Foundation (Grant No. 22-19-00666, https://rscf.ru/en/project/22-19-00666/) using the equipment of the Shared-Use Center “Mechanics”, ITAM SB RAS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosinov, A.D., Semionov, N.V., Yatskikh, A.A. et al. Influence of the leading-edge bluntness radius of a plate on the response of flat-plate boundary layer to an N-wave at Mach number M = 2. Thermophys. Aeromech. 30, 227–237 (2023). https://doi.org/10.1134/S086986432302004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S086986432302004X

Keywords

Navigation