Skip to main content
Log in

Calculation of Broadening Coefficients of Sulfur Dioxide Lines by Carbon Dioxide in the ν1 + ν3 A-type Band at Room Temperature

  • SPECTROSCOPY OF AMBIENT MEDIUM
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Broadening coefficient of sulfur dioxide lines by carbon dioxide are calculated at room temperature for the ν1 + ν3 band with the rotational quantum numbers J and Ka varying in the ranges up to 100 and up to 20, respectively. Parameters of the semi-empirical method are determined from the analysis of experimental data. The broadening coefficients computed are in a good agreement with the literature data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. B. Bezard, C. Bergh, B. Fegley, J.-P. Maillard, D. Crisp, T. Owen, J. B. Pollack, and D. Grinspoon, “The abundance of sulfur dioxide below the clouds of Venus,” Geophys. Rev. Lett. 20 (15), 1587–1590 (1993).

    Article  ADS  Google Scholar 

  2. E. Marcq, J.-L. Bertaux, F. Montmessin, and D. Belyaev, “Variations of sulphur dioxide at the cloud top of Venus’s dynamic atmosphere,” Nat. Geosci. 6 (1), 25–28 (2013).

    Article  ADS  Google Scholar 

  3. L. Roth, J. Boissier, A. Moullet, A. Sanchez-Monge, K. Kleer, M. Yoneda, and R. Hikida, “An attempt to detect transient changes in Io’s SO2 and NaCl atmosphere,” Icarus 350, 113925 (2020).

    Article  Google Scholar 

  4. A. Khayat, G. Villanueva, M. Mumma, and A. Tokunaga, “A search for and above Tharsis and Syrtis volcanic districts on Mars using ground-based high-resolution submillimeter spectroscopy,” Icarus 253, 130–141 (2015).

    Article  ADS  Google Scholar 

  5. E. Herbst and E. F. Dishoeck, “Complex organic interstellar molecules,” Ann. Rev. Astron. Astrophys. 47, 427–480 (2009).

    Article  ADS  Google Scholar 

  6. Chandra S. Krishnaji, “Molecular interaction and linewidth of the asymmetric molecule SO2. II. SO2–CO2 collisions,” J. Chem. Phys. 38 (4), 1019–1021 (1963).

    Article  ADS  Google Scholar 

  7. G. Ceselin, N. Tasinato, C. Puzzarini, A. P. Charmet, P. Stoppa, and S. Giorgianni, “CO2-, He- and H2‑broadening coefficients of SO2 for ν1 band and ground state transitions for astrophysical applications,” J. Quant. Spectrosc. Radiat. Transfer 203, 367–376 (2017).

    Article  ADS  Google Scholar 

  8. Yu. G. Borkov, O. M. Lyulin, T. M. Petrova, A. M. Solodov, A. A. Solodov, V. M. Deichuli, and V. I. Perevalov, “CO2-broadening and shift coefficients of sulfur dioxide near 4 μm,” J. Quant. Spectrosc. Radiat. Transfer 225, 119–124 (2019).

    Article  ADS  Google Scholar 

  9. A. S. Dudaryonok and N. N. Lavrentieva, “Theoretical estimation of SO2 line broadening coefficients induced by carbon dioxide in the 150–300 K temperature range,” J. Quant. Spectrosc. Radiat. Transfer 219, 360–365 (2018).

    Article  ADS  Google Scholar 

  10. A. S. Dudaryonok, T. A. Nevzorova, N. A. Lavrentiev, and N. N. Lavrentieva, “Calculation of SO2–CO2 line broadening coefficients,” Proc. SPIE—Int. Soc. Opt. Eng. 12341 (2022).

  11. J. S. Wilzewski, I. Gordon, R. V. Kochanov, C. Hill, and L. S. Rothman, “H2, He, and CO2 line-broadening coefficients, pressure shifts and temperature-dependence exponents for the HITRAN database. Part 1: SO2, NH3, HF, HCl, OCS and C2H2,” J. Quant. Spectrosc. Radiat. Transfer 168, 193–206 (2016).

    Article  ADS  Google Scholar 

  12. I. E. Gordon, L. S. Rothman, R. J. Hargreaves, R. Hashemi, E. V. Karlovets, F. M. Skinner, E. K. Conway, C. Hill, R. V. Kochanov, Y. Tan, P. Wcislo, A. A. Finenko, K. Nelson, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, A. Coustenis, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, E. J. Mlawer, A. V. Nikitin, V. I. Perevalov, M. Rotger, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, E. M. Adkins, A. Baker, A. Barbe, E. Canew, A. G. Csaszar, A. Dudaryonok, O. Egorov, A. J. Fleisher, H. Fleurbaey, A. Foltynowicz, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, V.-M. Horneman, X. Huang, T. Karman, J. Karns, S. Kassi, I. Kleiner, V. Kofman, F. Kwabia-Tchana, N. N. Lavrentieva, T. J. Lee, D. A. Long, A. A. Lukashevskaya, O. M. Lyulin, V. Yu. Makhnev, W. Matt, S. T. Massie, M. Melosso, S. N. Mikhailenko, D. Mondelain, H. S. P. Muller, O. V. Naumenko, A. Perrin, O. L. Polyansky, E. Raddaoui, P. L. Raston, Z. D. Reed, M. Rey, C. Richard, R. Tobias, I. Sadiek, D. W. Schwenke, E. Starikova, K. Sung, F. Tamassia, S. A. Tashkun, J. V. Auwera, I. A. Vasilenko, A. A. Vigasin, G. L. Villanueva, B. Vispoel, G. Wagner, A. Yachmenev, and S. N. Yurchenko, “The HITRAN2020 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 277 (1), 107949 (2022).

    Article  Google Scholar 

  13. H. S. P. Muller and S. Brumken, “Accurate rotational spectroscopy of sulfur dioxide, SO2, in its ground vibrational and first excited bending states, ν2 = 0, 1, up to 2 THz,” J. Mol. Spectrosc. 232 (2), 213–222 (2005).

    Article  ADS  Google Scholar 

  14. A. D. Bykov, N. N. Lavrentieva, and L. N. Sinitsa, “Semi-empiric approach of the calculation of H2O and CO2 line broadening and shifting,” Mol. Phys. 102 (14-15), 1653–1658 (2004).

    Article  ADS  Google Scholar 

  15. W. J. Lafferty, A. S. Pine, G. Hilpert, R. L. Sams, J.‑M. Flaud, “The ν1 + ν3 and 2ν1 + ν3 band systems of SO2: Line positions and intensities,” J. Mol. Spectrosc. 176 (2), 280–286 (1996).

    Article  ADS  Google Scholar 

  16. A. A. Radtsig and B. M. Smirnov, Handbook of Atomic and Molecular Physics (Atomizdat, Moscow, 1980) [in Russian].

    Google Scholar 

  17. C. G. Gray and K. E. Gubbins, Theory of Molecular Fluids, Vol. 1, Fundamentals (Clarendon Press, Oxford, 1984).

  18. C. Graham, J. Pierrus, and R. E. Raab, “Measurement of the electric quadrupole moments of CO2, CO and N2,” Mol. Phys. 67 (4), 939–955 (1989).

    Article  ADS  Google Scholar 

  19. A. D. Bykov, N. N. Lavrent’eva, and L. N. Sinitsa, “The H2O line shifts induced by nitrogen, oxygen, and air pressure within the impact theory by Anderson,” Atmos. Ocean. Opt. 12 (10), 919–927 (1999).

    Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. A. Nevzorova, A. S. Dudaryonok, N. A. Lavrentiev or N. N. Lavrentieva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nevzorova, T.A., Dudaryonok, A.S., Lavrentiev, N.A. et al. Calculation of Broadening Coefficients of Sulfur Dioxide Lines by Carbon Dioxide in the ν1 + ν3 A-type Band at Room Temperature. Atmos Ocean Opt 36, 287–292 (2023). https://doi.org/10.1134/S1024856023040127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856023040127

Keywords:

Navigation