Skip to main content
Log in

Computed tomography to guide transcatheter aortic valve implantation

Computertomographie zur periinterventionellen Diagnostik der Transkatheter-Aortenklappenimplantation

  • Main topic
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Since its introduction in 2022, transcatheter aortic valve implantation (TAVI) has revolutionized the treatment and prognosis of patients with aortic stenosis. Robust clinical trial data and a wealth of scientific evidence support its efficacy and safety. One of the key factors for success of the TAVI procedure is careful preprocedural planning using imaging. Computed tomography (CT) has developed into the standard imaging method for comprehensive patient assessment in this context. Suitability of the femoral and iliac arteries for transfemoral access, exact measurement of aortic annulus size and geometry as the basis for prosthesis selection, quantification of the spatial relationship of the coronary ostia to the aortic annular plane, and identification of optimal fluoroscopic projection angles for the implantation procedure are among the most important information that can be gained from preprocedural CT. Further research is aimed at improving risk stratification, for example, with respect to annular perforation, periprosthetic aortic regurgitation, and need for postprocedural implantation of a permanent pacemaker.

Zusammenfassung

Seit ihrer Einführung im Jahr 2022 hat die Transkatheter-Aortenklappenimplantation (TAVI) die Behandlung und Prognose von Patientinnen und Patienten mit Aortenklappenstenose revolutioniert. Belastbare klinische Studiendaten und umfangreiche wissenschaftliche Evidenz belegen Effektivität und Sicherheit. Einer der Schlüsselfaktoren für den Erfolg des TAVI-Verfahrens ist die sorgfältige Planung vor dem Eingriff anhand bildgebender Verfahren. Die Computertomographie (CT) hat sich dafür zum Standardbildgebungsverfahren für die umfassende periinterventionelle Diagnostik entwickelt. Die Eignung der femoralen und iliakalen Arterien für den transfemoralen Zugang, die genaue Bestimmung von Größe und Geometrie des Aortenannulus als Grundlage für die Prothesenauswahl, die Quantifizierung der räumlichen Beziehung der Koronarostien zur Aortenannulusebene und die Identifizierung optimaler fluoroskopischer Projektionswinkel für das Implantationsverfahren zählen zu den wesentlichsten Informationen, die sich aus der präprozeduralen CT ergeben. Weitere Forschung zielt darauf ab, die Risikostratifizierung zu verbessern, z. B. in Bezug auf die Annulusperforation, die periprothetische Aortenregurgitation und die Notwendigkeit für die postprozedurale Implantation eines permanenten Schrittmachers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mack MJ, Leon MB, Thourani VH et al (2019) Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N Engl J Med 380:1695–1705. https://doi.org/10.1056/nejmoa1814052

    Article  PubMed  Google Scholar 

  2. Popma JJ, Deeb GM, Yakubov SJ et al (2019) Transcatheter aortic-valve replacement with a self-expanding valve in low-risk patients. N Engl J Med 380:1706–1715. https://doi.org/10.1056/nejmoa1816885

    Article  PubMed  Google Scholar 

  3. Investigators TUTT, Fairbairn T, Kemp I et al (2022) Effect of transcatheter aortic valve implantation vs surgical aortic valve replacement on all-cause mortality in patients with aortic stenosis. JAMA 327:1875–1887. https://doi.org/10.1001/jama.2022.5776

    Article  Google Scholar 

  4. Vahanian A, Beyersdorf F, Praz F et al (2022) 2021 ESC/EACTS guidelines for the management of valvular heart disease. EuroIntervention 17:e1126–e1196. https://doi.org/10.4244/eij-e-21-00009

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ali N, Faour A, Rawlins J et al (2021) ‘Valve for life’: tackling the deficit in transcatheter treatment of heart valve disease in the UK. Open Heart 8:e1547. https://doi.org/10.1136/openhrt-2020-001547

    Article  PubMed  PubMed Central  Google Scholar 

  6. Achenbach S, Delgado V, Hausleiter J et al (2012) SCCT expert consensus document on computed tomography imaging before transcatheter aortic valve implantation (TAVI)/transcatheter aortic valve replacement (TAVR). J Cardiovasc Comput Tomogr 6:366–380. https://doi.org/10.1016/j.jcct.2012.11.002

    Article  PubMed  Google Scholar 

  7. Tops LF, Wood DA, Delgado V et al (2008) Noninvasive evaluation of the aortic root with multislice computed tomography implications for transcatheter aortic valve replacement. JACC Cardiovasc Imaging 1:321–330. https://doi.org/10.1016/j.jcmg.2007.12.006

    Article  PubMed  Google Scholar 

  8. Toggweiler S, Gurvitch R, Leipsic J et al (2012) Percutaneous aortic valve replacement vascular outcomes with a fully percutaneous procedure. J Am Coll Cardiol 59:113–118. https://doi.org/10.1016/j.jacc.2011.08.069

    Article  PubMed  Google Scholar 

  9. Wiewiórka Ł, Trębacz J, Sobczyński R et al (2023) Computed tomography guided tailored approach to transfemoral access in patients undergoing transcatheter aortic valve implantation. Cardiol J 30:51–58. https://doi.org/10.5603/cj.a2021.0053

    Article  PubMed  PubMed Central  Google Scholar 

  10. Harries I, Weir-McCall JR, Williams MC et al (2020) CT imaging prior to transcatheter aortic valve implantation in the UK. Open Heart 7:e1233. https://doi.org/10.1136/openhrt-2019-001233

    Article  PubMed  PubMed Central  Google Scholar 

  11. Blanke P, Weir-McCall JR, Achenbach S et al (2019) Computed tomography imaging in the context of transcatheter aortic valve implantation (TAVI) / transcatheter aortic valve replacement (TAVR): an expert consensus document of the society of cardiovascular computed tomography. J Cardiovasc Comput 13:1–20. https://doi.org/10.1016/j.jcct.2018.11.008

    Article  Google Scholar 

  12. Otto CM, Nishimura RA, Bonow RO et al (2021) 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 143:e72–e227. https://doi.org/10.1161/cir.0000000000000923

    Article  PubMed  Google Scholar 

  13. Vahanian A, Beyersdorf F, Praz F et al (2021) 2021 ESC/EACTS guidelines for the management of valvular heart disease. Eur Heart J 43:561–632. https://doi.org/10.1093/eurheartj/ehab395

    Article  Google Scholar 

  14. van Kesteren F, van Mourik MS, Vendrik J et al (2018) Incidence, predictors, and impact of vascular complications after transfemoral transcatheter aortic valve implantation with the SAPIEN 3 prosthesis. Am J Cardiol 121:1231–1238. https://doi.org/10.1016/j.amjcard.2018.01.050

    Article  PubMed  Google Scholar 

  15. Batchelor W, Patel K, Hurt J et al (2020) Incidence, prognosis and predictors of major vascular complications and percutaneous closure device failure following contemporary percutaneous ransfemoral transcatheter aortic valve replacement. Cardiovasc Revasc Med 21:1065–1073. https://doi.org/10.1016/j.carrev.2020.01.007

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mach M, Poschner T, Hasan W et al (2021) The Iliofemoral tortuosity score predicts access and bleeding complications during transfemoral transcatheter aortic valve replacement: data from the VIenna cardio thoracic aOrtic valve registrY (VICTORY). Eur J Clin Invest 51:e13491. https://doi.org/10.1111/eci.13491

    Article  PubMed  PubMed Central  Google Scholar 

  17. Okuyama K, Jilaihawi H, Kashif M et al (2015) Transfemoral Access Assessment for Transcatheter Aortic Valve Replacement: Evidence-Based Application of Computed Tomography Over Invasive Angiography. Circ Cardiovasc Imaging. https://doi.org/10.1161/circimaging.114.001995

    Article  PubMed  Google Scholar 

  18. Blanke P, Weir-McCall JR, Achenbach S et al (2019) Computed tomography imaging in the context of transcatheter aortic valve implantation (TAVI)/Transcatheter aortic valve replacement (TAVR). JACC Cardiovasc Imaging 12:1–24. https://doi.org/10.1016/j.jcmg.2018.12.003

    Article  PubMed  Google Scholar 

  19. Blakeslee-Carter J, Dexter D, Mahoney P et al (2018) A novel Iliac morphology score predicts procedural mortality and major vascular complications in transfemoral aortic valve replacement. Ann Vasc Surg 46:208–217. https://doi.org/10.1016/j.avsg.2017.06.137

    Article  PubMed  Google Scholar 

  20. Staniloae CS, Jilaihawi H, Amoroso NS et al (2019) Systematic transfemoral transarterial transcatheter aortic valve replacement in hostile vascular access. Struct Heart 3:34–40. https://doi.org/10.1080/24748706.2018.1556828

    Article  Google Scholar 

  21. Patel JS, Krishnaswamy A, Svensson LG et al (2016) Access options for transcatheter aortic valve replacement in patients with unfavorable aortoiliofemoral anatomy. Curr Cardiol Rep 18:110. https://doi.org/10.1007/s11886-016-0788-8

    Article  PubMed  Google Scholar 

  22. Lederman RJ, Greenbaum AB, Rogers T et al (2017) Anatomic suitability for transcaval access based on computed tomography. JACC Cardiovasc Interv 10:1–10. https://doi.org/10.1016/j.jcin.2016.09.002

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jilaihawi H, Kashif M, Fontana G et al (2012) Cross-sectional computed tomographic assessment improves accuracy of aortic annular sizing for transcatheter aortic valve replacement and reduces the incidence of paravalvular aortic regurgitation. J Am Coll Cardiol 59:1275–1286. https://doi.org/10.1016/j.jacc.2011.11.045

    Article  PubMed  Google Scholar 

  24. Murphy DT, Blanke P, Alaamri S et al (2016) Dynamism of the aortic annulus: effect of diastolic versus systolic CT annular measurements on device selection in transcatheter aortic valve replacement (TAVR). J Cardiovasc Comput Tomogr 10:37–43. https://doi.org/10.1016/j.jcct.2015.07.008

    Article  PubMed  Google Scholar 

  25. Schuhbaeck A, Achenbach S, Pflederer T et al (2014) Reproducibility of aortic annulus measurements by computed tomography. Eur Radiol 24:1878–1888. https://doi.org/10.1007/s00330-014-3199-5

    Article  PubMed  Google Scholar 

  26. Schmidkonz C, Marwan M, Klinghammer L et al (2014) Interobserver variability of CT angiography for evaluation of aortic annulus dimensions prior to transcatheter aortic valve implantation (TAVI). Eur J Radiol 83:1672–1678. https://doi.org/10.1016/j.ejrad.2014.06.001

    Article  CAS  PubMed  Google Scholar 

  27. Leipsic J, Gurvitch R, LaBounty TM et al (2011) Multidetector computed tomography in transcatheter aortic valve implantation. JACC Cardiovasc Imaging 4:416–429. https://doi.org/10.1016/j.jcmg.2011.01.014

    Article  PubMed  Google Scholar 

  28. Ribeiro HB, Webb JG, Makkar RR et al (2013) Predictive factors, management, and clinical outcomes of coronary obstruction following transcatheter aortic valve implantation insights from a large multicenter registry. J Am Coll Cardiol 62:1552–1562. https://doi.org/10.1016/j.jacc.2013.07.040

    Article  PubMed  Google Scholar 

  29. Akinseye OA, Jha SK, Ibebuogu UN (2018) Clinical outcomes of coronary occlusion following transcatheter aortic valve replacement: a systematic review. Cardiovasc Revasc Med 19:229–236. https://doi.org/10.1016/j.carrev.2017.09.006

    Article  PubMed  Google Scholar 

  30. Heitkemper M, Hatoum H, Azimian A et al (2020) Modeling risk of coronary obstruction during transcatheter aortic valve replacement. J Thorac Cardiovasc Surg 159:829–838.e3. https://doi.org/10.1016/j.jtcvs.2019.04.091

    Article  PubMed  Google Scholar 

  31. Lederman RJ, Babaliaros VC, Rogers T et al (2019) Preventing coronary obstruction during transcatheter aortic valve replacement. JACC Cardiovasc Interv 12:1197–1216. https://doi.org/10.1016/j.jcin.2019.04.052

    Article  PubMed  PubMed Central  Google Scholar 

  32. Seiffert M, Fujita B, Avanesov M et al (2016) Device landing zone calcification and its impact on residual regurgitation after transcatheter aortic valve implantation with different devices. Eur Heart J Cardiovasc Imaging 17:576–584. https://doi.org/10.1093/ehjci/jev174

    Article  PubMed  Google Scholar 

  33. Musallam A, Buchanan KD, Yerasi C et al (2022) Impact of left ventricular outflow tract calcification on outcomes following transcatheter aortic valve replacement. Cardiovasc Revasc Med 35:1–7. https://doi.org/10.1016/j.carrev.2021.07.010

    Article  PubMed  Google Scholar 

  34. Hansson NC, Nørgaard BL, Barbanti M et al (2015) The impact of calcium volume and distribution in aortic root injury related to balloon-expandable transcatheter aortic valve replacement. J Cardiovasc Comput Tomogr 9:382–392. https://doi.org/10.1016/j.jcct.2015.04.002

    Article  PubMed  Google Scholar 

  35. Okuno T, Asami M, Heg D et al (2020) Impact of left ventricular outflow tract calcification on procedural outcomes after transcatheter aortic valve replacement. JACC Cardiovasc Interv 13:1789–1799. https://doi.org/10.1016/j.jcin.2020.04.015

    Article  PubMed  Google Scholar 

  36. Jilaihawi H, Makkar RR, Kashif M et al (2014) A revised methodology for aortic-valvar complex calcium quantification for transcatheter aortic valve implantation. Eur Heart J Cardiovasc Imaging 15:1324–1332. https://doi.org/10.1093/ehjci/jeu162

    Article  PubMed  Google Scholar 

  37. Hokken TW, Muhemin M, Okuno T et al (2022) Impact of membranous septum length on pacemaker need with different transcatheter aortic valve replacement systems: the INTERSECT registry. J Cardiovasc Comput Tomogr 16:524–530. https://doi.org/10.1016/j.jcct.2022.07.003

    Article  PubMed  Google Scholar 

  38. Mauri V, Deuschl F, Frohn T et al (2018) Predictors of paravalvular regurgitation and permanent pacemaker implantation after TAVR with a next-generation self-expanding device. Clin Res Cardiol 107:688–697. https://doi.org/10.1007/s00392-018-1235-1

    Article  PubMed  Google Scholar 

  39. Mauri V, Reimann A, Stern D et al (2016) Predictors of permanent pacemaker implantation after transcatheter aortic valve replacement with the SAPIEN 3. JACC Cardiovasc Interv 9:2200–2209. https://doi.org/10.1016/j.jcin.2016.08.034

    Article  PubMed  Google Scholar 

  40. Hamdan A, Guetta V, Klempfner R et al (2015) Inverse relationship between membranous septal length and the risk of atrioventricular block in patients undergoing transcatheter aortic valve implantation. JACC Cardiovasc Interv 8:1218–1228. https://doi.org/10.1016/j.jcin.2015.05.010

    Article  PubMed  Google Scholar 

  41. Makkar RR, Yoon S‑H, Chakravarty T et al (2021) Association between transcatheter aortic valve replacement for bicuspid vs tricuspid aortic stenosis and mortality or stroke among patients at low surgical risk. JAMA 326:1034–1044. https://doi.org/10.1001/jama.2021.13346

    Article  PubMed  PubMed Central  Google Scholar 

  42. Roberts WC, Janning KG, Ko JM et al (2012) Frequency of congenitally bicuspid aortic valves in patients ≥80 years of age undergoing aortic valve replacement for aortic stenosis (with or without aortic regurgitation) and implications for transcatheter aortic valve implantation. Am J Cardiol 109:1632–1636. https://doi.org/10.1016/j.amjcard.2012.01.390

    Article  PubMed  Google Scholar 

  43. Montalto C, Sticchi A, Crimi G et al (2021) Outcomes after transcatheter aortic valve replacement in bicuspid versus tricuspid anatomy a systematic review and meta-analysis. JACC Cardiovasc Interv 14:2144–2155. https://doi.org/10.1016/j.jcin.2021.07.052

    Article  PubMed  Google Scholar 

  44. Keane MG, Wiegers SE, Plappert T et al (2000) Bicuspid Aortic Valves Are Associated With Aortic Dilatation Out of Proportion to Coexistent Valvular Lesions. Circulation. https://doi.org/10.1161/circ.102.suppl_3.iii-35

    Article  PubMed  Google Scholar 

  45. Holfeld J, Nägele F, Stoessel L et al (2022) Different calcification patterns of tricuspid and bicuspid aortic valves and their clinical impact. Thorac Cardiovasc Surg 70:S1–S61. https://doi.org/10.1055/s-0042-1742938

    Article  Google Scholar 

  46. Frangieh AH, Michel J, Deutsch O et al (2019) Aortic annulus sizing in stenotic bicommissural non-raphe-type bicuspid aortic valves: reconstructing a three-dimensional structure using only two hinge points. Clin Res Cardiol 108:6–15. https://doi.org/10.1007/s00392-018-1295-2

    Article  PubMed  Google Scholar 

  47. Schäfers H‑J, Schmied W, Marom G, Aicher D (2012) Cusp height in aortic valves. J Thorac Cardiovasc Surg 146:269–274. https://doi.org/10.1016/j.jtcvs.2012.06.053

    Article  PubMed  Google Scholar 

  48. Goudot G, Mirault T, Rossi A et al (2019) Segmental aortic stiffness in patients with bicuspid aortic valve compared with first-degree relatives. Heart 105:130. https://doi.org/10.1136/heartjnl-2018-313232

    Article  PubMed  Google Scholar 

  49. Emam ARA, Chamsi-Pasha M, Pavlides G (2016) Ostial coronary occlusion during TAVR in bicuspid aortic valve, should we redefine what is a safe ostial height? Int J Cardiol 212:288–289. https://doi.org/10.1016/j.ijcard.2016.03.100

    Article  PubMed  Google Scholar 

  50. Alkadhi H, Leschka S, Trindade PT et al (2010) Cardiac CT for the differentiation of bicuspid and tricuspid aortic valves: comparison with echocardiography and surgery. Am J Roentgenol 195:900–908. https://doi.org/10.2214/ajr.09.3813

    Article  Google Scholar 

  51. Tanaka R, Yoshioka K, Niinuma H et al (2010) Diagnostic value of cardiac CT in the evaluation of bicuspid aortic stenosis: comparison with echocardiography and operative findings. Am J Roentgenol 195:895–899. https://doi.org/10.2214/ajr.09.3164

    Article  Google Scholar 

  52. Sievers H‑H, Schmidtke C (2007) A classification system for the bicuspid aortic valve from 304 surgical specimens. J Thorac Cardiovasc Surg 133:1226–1233. https://doi.org/10.1016/j.jtcvs.2007.01.039

    Article  PubMed  Google Scholar 

  53. Yoon S‑H, Kim W‑K, Dhoble A et al (2020) Bicuspid aortic valve morphology and outcomes after transcatheter aortic valve replacement. J Am Coll Cardiol 76:1018–1030. https://doi.org/10.1016/j.jacc.2020.07.005

    Article  CAS  PubMed  Google Scholar 

  54. Tam DY, Dharma C, Rocha RV et al (2020) Transcatheter ViV versus redo surgical AVR for the management of failed biological prosthesis early and late outcomes in a propensity-matched cohort. JACC Cardiovasc Interv 13:765–774. https://doi.org/10.1016/j.jcin.2019.10.030

    Article  PubMed  Google Scholar 

  55. Webb JG, Murdoch DJ, Alu MC et al (2019) 3‑year outcomes after valve-in-valve transcatheter aortic valve replacement for degenerated bioprostheses the PARTNER 2 registry. J Am Coll Cardiol 73:2647–2655. https://doi.org/10.1016/j.jacc.2019.03.483

    Article  PubMed  Google Scholar 

  56. Dvir D, Webb JG, Bleiziffer S et al (2014) Transcatheter aortic valve implantation in failed bioprosthetic surgical valves. JAMA 312:162–170. https://doi.org/10.1001/jama.2014.7246

    Article  CAS  PubMed  Google Scholar 

  57. Ochiai T, Oakley L, Sekhon N et al (2020) Risk of coronary obstruction due to sinus sequestration in redo transcatheter aortic valve replacement. JACC Cardiovasc Interv 13:2617–2627. https://doi.org/10.1016/j.jcin.2020.09.022

    Article  PubMed  Google Scholar 

  58. Ribeiro HB, Rodés-Cabau J, Blanke P et al (2017) Incidence, predictors, and clinical outcomes of coronary obstruction following transcatheter aortic valve replacement for degenerative bioprosthetic surgical valves: insights from the VIVID registry. Eur Heart J 39:687–695. https://doi.org/10.1093/eurheartj/ehx455

    Article  Google Scholar 

  59. Dvir D, Leipsic J, Blanke P et al (2015) Coronary Obstruction in Transcatheter Aortic Valve-in-Valve Implantation: Preprocedural Evaluation, Device Selection, Protection, and Treatment. Circ Cardiovasc Interv. https://doi.org/10.1161/circinterventions.114.002079

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Achenbach.

Ethics declarations

Conflict of interest

M. Daghem, F. Weidinger and S. Achenbach declare that they have no competing interests.

For this article no studies with human participants or animals were performed by any of the authors. All studies mentioned were in accordance with the ethical standards indicated in each case.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daghem, M., Weidinger, F. & Achenbach, S. Computed tomography to guide transcatheter aortic valve implantation. Herz 48, 359–365 (2023). https://doi.org/10.1007/s00059-023-05203-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-023-05203-4

Keywords

Schlüsselwörter

Navigation