Skip to main content
Log in

Experimental study of urotropine gasification in CO2 flow at different temperatures

  • Published:
Thermophysics and Aeromechanics Aims and scope

Abstract

The gasification of solid urotropine was experimentally studied at filtering a high-temperature flow of carbon dioxide through it. It was shown that with an increase in the temperature of the filtered gas from 650 to 920 K, the time of urotropine gasification decreased and the average gasification rate increased from 0.38 to 1.25 g/s, leading to an increase in the flow of urotropine gasification products. The maximum achieved value of the mass of urotropine gasification products was 0.8 g per 1 g of incoming gas. In the temperature range of 480–530 K, intensive gasification of urotropine occurred, while the temperature of the gaseous products leaving the reactor remained practically unchanged. The amount of noncondensable gaseous gasification products did not exceed 1% of the initial mass of the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. V.V. Kirillov and R.D. Shelkhovskoi, Mathematical models of low-temperature gas generator, Lecture Notes in Mechanical Engng, Springer, Cham., 2019, P. 47–55.

    Google Scholar 

  2. N.A. Lutsenko, S.S. Fetsov, K.G. Borovik, and A.S. Kim, Gas flow and heat transfer in granular energy-releasing materials: Novel computational model and important features, Inter. J. Heat Mass Transfer, 2022, Vol. 199, P. 123464–1–123464–15.

    Article  Google Scholar 

  3. V.V. Kirillov and R.D. Shelkhovskoi, Heat and mass transfer in low-temperature gas generation, Procedia Engng, 2017, Vol. 206, P. 242–247.

    Article  Google Scholar 

  4. L.J. Pimont, P.C.G. Fernandes, L.F.A. Ferrao, and M.Y. Nagamachi, Study on the mechanical properties of solid composite propellant used as a gas generator, J. Aerospace Technology and Management, 2020, Vol. 11, No. 1, P. 7–10.

    Article  Google Scholar 

  5. A. Patel and R.A. Frederick, Experimental investigation of PMMA cooling beds for warm gas generator applications, AIAA Propulsion and Energy, 2020 Forum, 2020, P. 1–22.

  6. D.A. Vnuchkov, V.I. Zvegintsev, D.G. Nalivaichenko, V.I. Smolyaga, and A.V. Stepanov, Testing of solid fuel ramjet with measurement of thrust characteristics in aerodynamic facilities, Thermophysics and Aeromechanics, 2018, Vol. 25, No. 4, P. 605–611.

    Article  ADS  Google Scholar 

  7. S.M. Frolov and V.S. Ivanov, Breakthrough in the theory of ramjets, Russ. J. Phys. Chem., B. 2021, Vol. 15, No. 2, P. 318–325.

    Article  Google Scholar 

  8. A.G. Korotkikh, K.V. Slyusarsky, I.V. Sorokin, and V.A. Arkhipov, Study of ignition of high-energy materials with boron and aluminum and titanium diborides, Combust. Explos. Shock Waves, 2018, Vol. 54, No. 3, P. 350–356.

    Article  Google Scholar 

  9. X. Lu, K. Jiang, S. Cheng, and H. Wang, A fluid-structure coupling method to predict the interior ballistic characteristic of gas generator with complex structures, Advances in Transdisciplinary Engng, 2022, Vol. 20, P. 698–705.

    Google Scholar 

  10. O. Musa, G. Huang, Z. Yu, Effects of new solid propellant configurations on the combustion characteristics of a ramjet, Aerospace Sci. and Technology, 2021, Vol. 119, No. 4, P. 107192–1–107192–17.

    Article  Google Scholar 

  11. V.V. Kirillov and S.D. Vaulin, Influence of solid coolant rate decomposition in chamber of the low temperature gas generation, Chemical Physics and Mesocsopy, 2014, Vol. 16, No. 1, P. 60–62.

    Google Scholar 

  12. A. Kim, Z. Liu, and G. Crampton, Study of explosion protection in a small compartment, Fire Technology, 2007, Vol. 43, No. 2, P. 145–172.

    Article  Google Scholar 

  13. A. Oserov, B. Natan, and A. Gany, Analytical modelling of the gas generator frequency response in hybrid rocket boosters, ACTA Astronautica, 1986, Vol. 39, No. 8, P. 589–598.

    Article  ADS  Google Scholar 

  14. S. Yang, G.Q. He, Y. Liu, and J. Li, Turbocharged solid propellant ramjet for tactical missile, Applied Mechanics and Materials, 2012, Vol. 152–154, P. 204–209.

    Article  ADS  Google Scholar 

  15. M. Hong, Experimental correction of combustion gas properties of an-based composite solid propellant used for turbo-pump starter, Aerospace Sci. and Technology, 2012, Vol. 16, P. 56–60.

    Article  Google Scholar 

  16. A. Patel and R.A. Frederick, Gas cooling generator technologies for aerospace applications, AIAA Propulsion and Energy Forum and Exposition, 2019, AIAA 2019–4068.

  17. X. Zhao, Z. Xia, L. Ma, Ch. Li, Ch. Fang, B. Natan, and A. Gany, Research progress on solid-fueled Scramjet, Chinese J. Aeronautics, 2022, Vol. 35, No. 1, P. 398–415.

    Article  Google Scholar 

  18. R. Srinivasan and B.N. Raghunandan, Experiments on thermal response of low aspect ratio packed beds at high Reynolds numbers with varying inflow temperatures, Experimental Thermal and Fluid Sci., 2012, Vol. 44, P. 323–333.

    Article  Google Scholar 

  19. A.I. Karpov, A.Y. Lesthev, A.M. Lipanov, and G.A. Leschev, Production of the fire extinguishing mixture by solid propellant propulsion, J. Less Prevention in the Process Industries, 2013, Vol. 26, P. 338–343.

    Article  Google Scholar 

  20. S. Krishnan and K.K. Rajesh, Experimental investigation of erosive burning of composite propellants under supersonic crossflows, Inter. J. Energetic Materials and Chemical Propulsion, 2002, Vol. 5, No. 1–6, P. 316–325.

    Google Scholar 

  21. D.O. Glushkov, A.G. Kosintsev, G.V. Kuznetsov, and V.S. Vysokomorny, Experimental research and numerical simulation of gel fuel ignition by a hot particle, Fuel, 2021, Vol. 291, P. 120172–1–120172–16.

    Article  Google Scholar 

  22. A.G. Korotkikh, A.B. Godunov, and I.V. Sorokin, Al−Cu powder oxidation kinetics during heating in air, Combust. Explos. Shock Waves, 2022, Vol. 58, No. 2, P. 159–168.

    Article  Google Scholar 

  23. A.M. Tereza, S.P. Medvedev, and V.N. Smirnov, Chemiluminescence of electronically excited species during the self-ignition of acetylene behind reflected shock waves, Acta Astronautica, 2021, Vol. 181, P. 612–619.

    Article  ADS  Google Scholar 

  24. D. Podlesniy, A. Zaichenko, M. Tsvetkov, and M. Salganskaya, Experimental investigation of waste oil processing by partial oxidation in a moving bed reactor, Fuel, 2021, Vol. 298, No. 11–12, P. 120862–1–120862–10.

    Article  Google Scholar 

  25. O.S. Rabinovich, A.I. Malinouski, V.M. Kislov, and E.A. Salgansky, Effect of thermo-hydrodynamic instability on structure and characteristics of filtration combustion wave of solid fuel, Combustion Theory and Modelling, 2016, Vol. 20, No. 5, P. 877–893.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. G.B. Manelis, S.V. Glazov, E.A. Salgansky, and D. Lempert, Extraction of molybdenum-containing species from heavy oil residues using the filtration combustion method, Inter. J. Heat Mass Transfer, 2016, Vol. 92, P. 744–750.

    Article  Google Scholar 

  27. A.V. Fedorychev and Yu.M. Milekhin, Combustion model for a composite solid propellant with an evaporating coolant, Combust. Explos. Shock Waves, 2022, Vol. 58, No. 3, P. 362–371.

    Article  Google Scholar 

  28. V.M. Kislov, E.A. Salganskii, M.V. Tsvetkov, and Yu.Yu. Tsvetkova, Effect of catalysts on the yield of products formed in biomass gasification, Russ. J. Appl. Chem., 2017, Vol. 90, No. 5, P. 716–720.

    Article  Google Scholar 

  29. A.N. Shiplyuk, V.I. Zvegintsev, S.M. Frolov, D.A. Vnuchkov, V.A. Kislovsky, S.V. Lukashevich, T.A. Kiseleva, A.Yu. Melnikov, and D.G. Nalivaychenko, Gasification of low-melting fuel in a high-temperature flow of inert gas, J. Propulsion and Power, 2021, Vol. 37, No. 1, P. 20–27.

  30. E.A. Salgansky and N.A. Lutsenko, Effect of solid fuel characteristics on operating conditions of low-temperature gas generator for high-speed flying vehicle, Aerospace Sci. and Technology, 2021, Vol. 109, P. 106420–1–106420–6.

    Article  Google Scholar 

  31. M.V. Salganskaya, A.Yu. Zaichenko, D.N. Podlesniy, M.V. Tsvetkov, Yu.Yu. Tsvetkova, and E.A. Salgansky, Experimental study of hexamethylenetetramine gasification at different temperatures of gas flow, Acta Astronautica, 2023, Vol. 204, P. 682–685.

    Article  ADS  Google Scholar 

  32. S.M. Aul’chenko, V.I. Zvegintsev, and S.M. Frolov, Numerical modeling of gasification of solid hydrocarbon materials in a heated-inert-gas flow, J. Engng Phys. Thermophys., 2022, Vol. 95, No. 1, P. 20–28.

    Article  ADS  Google Scholar 

  33. E.A. Salgansky, N.A. Lutsenko, and L.S. Yanovsky, Modeling of Gasification of a Solid Porous Energetic Material in a Low-Temperature Aircraft Gas Generator, Combust. Explos. Shock Waves, 2022, Vol. 58, No. 3, P. 312–317.

    Article  Google Scholar 

  34. A.N. Shiplyuk, V.I. Zvegintsev, S.M. Frolov, D.A. Vnuchkov, T.A. Kiseleva, V.A. Kislovsky, S.V. Lukashevich, A.Yu. Melnikov, and D.G. Nalivaychenko, Gasification of low-melting hydrocarbon material in the airflow heated by hydrogen combustion, Inter. J. Hydrogen Energy, 2020, Vol. 45, No. 15, P. 9098–9112.

  35. A.I. Podshivalov, Yu.A. Grishin, A.B. Kiskin, and V.E. Zarko, Improved microwave method for measuring the dynamic parameters of gasification of condensed materials, Combust. Explos. Shock Waves, 2022, Vol. 58, No. 5, P. 585–592.

    Article  Google Scholar 

  36. V. Zarko, A. Kiskin, and A. Cheremisin, Contemporary methods to measure regression rate of energetic materials: A review, Progress in Energy and Combustion Sci., 2022, Vol. 91, P. 100980–1–100980–16.

    Article  Google Scholar 

  37. D.A. Vnuchkov, V.I. Zvegintsev, D.G. Nalivaichenko, and S.M. Frolov, Measurement of instantaneous mass flow rate of polypropylene gasification products in airflow, Energies, 2022, Vol. 15, No. 16, P. 5765–1–5765–16.

    Article  Google Scholar 

  38. D.A. Vnuchkov, V.I. Zvegintsev, D.G. Nalivaichenko, and S.M. Frolov, Measurement of gas flow rate at gasification of low-melting materials in a flow-through gas generator, Energies, 2022, Vol. 15, No. 15, P. 5741–1–5741–13.

    Article  Google Scholar 

  39. E.A. Salgansky, A.Yu. Zaichenko, D.N. Podlesniy, M.V. Salganskaya, M.V. Tsvetkov, and Yu.Yu. Tsvetkova, Experimental Study of Urotropine Gasification at Different Gas Flux Temperatures, Russ. J. Phys. Chem. B, 2022, Vol. 16, No. 6, P. 1080–1084.

  40. I.V. Kytmanov and I.Ye. Nikitina, Ramjet engine regulation by changing the flow of a gasifier, Kompleksnye Problemy Razvitiya Nauki, Obrazovaniya i Ekonomiki Regiona, 2015, Vol. 6, No. 1, P. 106–131.

    Google Scholar 

  41. V.A. Levin, N.A. Lutsenko, E.A. Salgansky, and L.S. Yanovskiy, A model of solid-fuel gasification in the combined charge of a low-temperature gas generator of a flying vehicle, Doklady Physics, 2018, Vol. 63, No. 9, P. 375–379.

    Article  ADS  Google Scholar 

  42. A.D. Kokurin and L.G. Rodygin, Pyrolysis of organic compounds in a laminar diffusion flame, Combustion, Explosion and Shock Waves, 1969, Vol. 5, No. 4, P. 388–390.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Salgansky.

Additional information

This work was supported by the Russian Science Foundation (Project No. 21-79-20008).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salgansky, E.A., Zaichenko, A.Y., Podlesniy, D.N. et al. Experimental study of urotropine gasification in CO2 flow at different temperatures. Thermophys. Aeromech. 30, 339–345 (2023). https://doi.org/10.1134/S0869864323020142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869864323020142

Keywords

Navigation