Skip to main content
Log in

Laser Monitor for Simultaneous Imaging in the VIS and Near-IR Spectral Regions

  • OPTICAL INSTRUMENTATION
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Design of an active optics system (a laser monitor) for enhanced imaging simultaneously in the visible and near-IR spectral regions is presented. Each frame is formed in the active medium of a manganese atom brightness amplifier for the time corresponding to the amplification (lasing) pulse, which is about 25 ns for the visible region and 35 ns for the IR. Images are recorded with digital cameras including those based on a Russian-made InGaAs sensor. Images of processes, which are accompanied by background radiation, formed by a single pulse of a manganese chloride brightness amplifier are shown for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. W. Jung, H. Kim, A. Voronov, S. Park, J. Ryu, S. H. Jeong, and C. L. Roh, “High-precision laser glass cutting for future display,” J. Soc. Inform. Disp 30 (5), 462–470 (2022).

    Article  Google Scholar 

  2. H. Liu, Z. Guo, X. Yuan, Q. Gao, X. Duan, and X. Zhang, “Femtosecond laser processing and field emission properties of the FEAs on single crystal GdB6 (100) surface,” Vacuum 199, 110948 (2022).

    Article  ADS  Google Scholar 

  3. H. Liu, W. Lin, and M. Hong, “Hybrid laser precision engineering of transparent hard materials: Challenges, solutions and applications,” Light: Sci. Appl. 10 (1), 162 (2021).

    Article  ADS  Google Scholar 

  4. G. Dogan, F. Chiu, S. U. H. Chen, M. R. T. David, A. Michalowski, M. Schanzel, C. Silber, G. Schutz, C. Grevent, and K. Keskinbora, “Micromachining of Al2O3 thin films via laser drilling and plasma etching for interfacing copper,” Mater. Des. 210, 110114 (2021).

    Article  Google Scholar 

  5. B. Wang, L. Zhou, Y. Guo, H. Guo, Y. Zhong, X. Huang, Y. Ge, Q. Wang, X. Chu, Y. Jin, K. Lan, M. Yang, and J. Qu, “Cyanobacteria-based self-oxygenated photodynamic therapy for anaerobic infection treatment and tissue repair,” Bioact. Mater. 12, 314–326 (2022).

    Article  Google Scholar 

  6. M. Kwasny and A. Bombalska, “Applications of laser-induced fluorescence in medicine,” Sensors 22 (8), 2956 (2022).

    Article  ADS  Google Scholar 

  7. W. Zeng, F. Cai, WangF. Ming, L. Miao, F. You, and F. Yao, “Finite element simulation of laser-generated ultrasonic waves for quantitative detection of internal defects in welds,” Optik 221, 165361 (2020).

    Article  ADS  Google Scholar 

  8. I. Moralev, P. Kazanskii, V. Bityurin, A. Bocharov, A. Firsov, E. Dolgov, and S. Leonov, “Gas dynamics of the pulsed electric arc in the transversal magnetic field,” J. Phys. D: Appl. Phys 53 (42) (2020).

  9. W. C. Wang, B. Zhou, S. H. Xu, Z. M. Yang, and Q. Y. Zhang, “Recent advances in soft optical glass fiber and fiber lasers,” Prog. Mater. Sci. 101, 90–171 (2019).

    Article  Google Scholar 

  10. E. M. Dianov, “Fiber-optics lasers,” Foton-Ekspress, No. 1, 22–25 (2016).

    Google Scholar 

  11. M. S. Bowers, C. Canalias, S. Mirov, J. Nilsson, C. J. Saraceno, and P. G. Schunemann, “Feature issue introduction: Advanced solid-state lasers,” Opt. Mater. Express 12 (6), 20 762–20 766 (2022).

    Article  Google Scholar 

  12. U. Brauch, C. Rocker, T. Graf, and M. Abdou Ahmed, “High-power, high-brightness solid-state laser architectures and their characteristics,” Appl. Phys. B: Laser. Opt. 128 (3), 1–32 (2022).

    Article  Google Scholar 

  13. V. M. Batenin, V. Yu. Glina, I. I. Klimovskii, and L. A. Seleznev, “Application of optical systems with intensity amplifiers for investigation of surfaces of graphite and pyrographite electrodes during burning of an arc,” High Temp. 29 (6), 983–988 (1991).

    Google Scholar 

  14. O. I. Buzhinskij, N. N. Vasiliev, A. I. Moshkunov, I. A. Slivitskaya, and A. A. Slivitsky, “Copper vapor laser application for surface monitoring of divertor and first wall in ITER,” Fusion Eng. Des. 60 (2), 141–155 (2002).

    Article  Google Scholar 

  15. Y. N. Saraev, M. V. Trigub, N. A. Vasnev, V. M. Semenchuk, and A. S. Nepomnyashiy, “The imaging of the welding processes with the use of CuBr-laser,” Proc. SPIE—Int. Soc. Opt. Eng. 11322 (2019). https://doi.org/10.1117/12.2554872

  16. I. V. Ponomarev, L. D. Shakina, S. B. Topchii, S. V. Klyuchareva, and A. E. Pushkareva, “Treatment of pyogenic granuloma with copper vapor laser radiation,” Vestn. Dermatologii Venerologii 97 (2), 41–49 (2021). https://doi.org/10.25208/vdv1209

    Article  Google Scholar 

  17. A. G. Grigoriyants, I. N. Shiganov, M. A. Kazaryan, and N. A. Lyabin, “Possibilities of precision material micro-processing by laser pulse copper-vapor radiation,” Naukoemkie Tekhnologii Mashinostroenii, No. 2, 36–48 (2017).

    Google Scholar 

  18. P. A. Bokhan, V. V. Buchanov, D. E. Zakrevskii, M. A. Kazaryan, A. M. Prokhorov, and N. V. Fateev, Atomic Vapor Optical and Laser-Chemical Isotope Separation (Fizmatlit, Moscow, 2017) [in Russian].

    Google Scholar 

  19. G. S. Evtushenko, S. N. Torgaev, M. V. Trigub, D. V. Shiyanov, T. G. Evtushenko, and A. E. Kulagin, “High-speed CuBr brightness amplifier beam profile,” Opt. Commun. 383, 148–152 (2017).

    Article  ADS  Google Scholar 

  20. N. Vuchkov and K. Temelkov, New High-Power Metal Halide Vapour Lasers: Gas-Discharge Plasma Physics and Lasers’ Applications (University of Adelaide, Australia, Adelaide, 2015).

    Google Scholar 

  21. P. G. Foster, Ph.D. Thesis (University of Adelaide, Australia, Adelaide, 2005).

  22. C. E. Little, Metal Vapor Lasers: Physics, Engineering & Application (John Willey&Sons, Chichester, 1998).

    Google Scholar 

  23. G. S. Evtushenko, Methods and Instruments for Visual and Optical Diagnostics of Objects and Fast Processes (Nova Science Publishers Inc, New York, 2018).

    Google Scholar 

  24. M. V. Trigub, K. V. Fedorov, and G. S. Evtushenko, “Remote object visualization using a laser monitor with a typical pulse duration of CuBr brightness amplifier,” Opt. Atmos. Okeana 28 (9), 850–853 (2015). https://doi.org/10.15372/AOO20150911

    Article  Google Scholar 

  25. D. V. Abramov, A. F. Galkin, S. V. Zharenova, I. I. Klimovsky, V. G. Prokoshev, and E. L. Shamanskaya, “Visualization of laser radiation interaction with surface of glass- and pyrocarbon by means of laser monitor,” Izv. Tomskogo Polytech. Univ. 312 (2), 97–100 (2008).

    Google Scholar 

  26. K. I. Zemskov, M. A. Kazaryan, V. M. Matveev, G. G. Petrash, M. P. Samsonova, and A. S. Skripcheno, “Laser machining of objects with simultaneous visual monitoring in a copper vapor oscillator-amplifier system,” Sov. J. Quantum Electron. 14 (2), 288 (1984).

    Article  ADS  Google Scholar 

  27. Y. N. Saraev, M. V. Trigub, and N. A. Vasnev, “Copper bromide vapor laser for imaging of drip-transfer processes in electric arc welding,” in Abstracts of the 14th Intern. Conf. on Pulsed Lasers and Laser Applications “AMPL-2019” (STT, Tomsk, 2019), pp. 104–105.

  28. Yu. N. Saraev, A. G. Lunev, M. V. Trigub, and M. V. Perovskaya, “The investigation technique of heat-and-mass transfer during arc welding with consumable electrode using laser lighting for video recording,” Aktual’nye Problemy Mashinostroenii 5 (1-2), 20–25 (2018).

    Google Scholar 

  29. V. V. Osipov, G. S. Evtushenko, V. V. Platonov, E. V. Thikhonov, M. V. Kremenetskii, N. A. Vasnev, P. I. Gembukh, and M. V. Trigub, “High-speed video recording of liquid melt spraying during ablation of the Y2O3 target using a fiber ytterbium laser,” in Proc. of 2022 Intern. Conf. Laser Optics (ICLO) (St. Petersburg, 2022).

  30. M. V. Trigub, V. V. Platonov, G. S. Evtushenko, V. V. Osipov, and T. G. Evtushenko, “Laser monitors for high speed imaging of materials modification and production,” Vacuum 143, 486–490 (2017).

    Article  ADS  Google Scholar 

  31. M. V. Trigub, N. A. Vasnev, V. D. Kitler, and G. S. Evtushenko, “The use of a bistatic laser monitor for high-speed imaging of combustion processes,” Atmos. Ocean. Opt. 34 (2), 154–159 (2021).

    Article  Google Scholar 

  32. L. Li, A. P. Ilyin, F. A. Gubarev, A. V. Mostovshchikov, and M. S. Klenovskii, “Study of self-propagating high-temperature synthesis of aluminium nitride using a laser monitor,” Ceram. Int. 44 (16), 19800–19808 (2018).

    Article  Google Scholar 

  33. L. Li, A. V. Mostovshchikov, A. P. Ilyin, A. Smirnov, and F. A. Gubarev, “Optical system with brightness amplification for monitoring the combustion of aluminum-based nanopowders,” IEEE Transac. Instrum. Meas. 69 (2), 457–468 (2020).

    Article  ADS  Google Scholar 

  34. E. V. Bushuev, V. Y. Yurov, A. P. Bolshakov, V. G. Ralchenko, A. A. Khomich, I. A. Antonova, E. E. Ashkinazi, V. A. Shershulin, V. P. Pashinin, and V. I. Konov, “Express in situ measurement of epitaxial CVD diamond film growth kinetics,” Diam. Relat. Mate.r 72, 61–70 (2017).

  35. D. V. Rybka, I. V. Andronikov, G. S. Evtushenko, A. V. Kozyrev, V. Yu. Kozhevnikov, I. D. Kostyrya, V. F. Tarasenko, M. V. Trigub, and Yu. V. Shut’ko, “Corona discharge in atmospheric pressure air under a modulated voltage pulse of 10 ms,” Atmos. Ocean. Opt. 26 (5), 449–454 (2013).

    Article  Google Scholar 

  36. M. V. Trigub, D. V. Shiyanov, V. B. Sukhanov, T. D. Petukhov, and G. S. Evtushenko, “A brightness amplifier on manganese atom transitions with a pulse repetition frequency of up to 100 kHz,” Tech. Phys. Lett. 44 (12), 1180–1183 (2018). https://doi.org/10.1134/S106378501812057X

    Article  ADS  Google Scholar 

  37. M. V. Trigub, D. V. Shiyanov, V. B. Sukhanov, and G. S. Evtushenko, “MnBr vapor active medium with a built-in reactor at 100-kHz pulse repetition frequency,” Atmos. Ocean. Opt. 27 (4), 458–462 (2014).

    Article  Google Scholar 

  38. D. V. Shiyanov, M. V. Trigub, V. G. Sokovikov, and G. S. Evtushenko, “MnCl2 laser with pulse repetition frequency up to 125 kHz,” Opt. Laser Technol. 129 (2020).

  39. N. A. Vasnev, P. I. Gembukh, and M. V. Trigub, “MnCl2 active medium for visualization in the visible and near-IR spectral ranges,” in Proc. of the XXX International Scientific conference “Laser Information Technologies LIT-2022” (Novosibirsk, 2022), pp. 82–84 [in Russian].

  40. M. V. Trigub, D. N. Ogorodnikov, and V. A. Dimaki, “Study of metal vapor laser power supply with pulsed charging of storage capacitance,” Opt. Atmos. Okeana 27 (12), 1112–1115 (2014).

    Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 19-79-10 096-P). The design of the power supply source with pulsed charge of the working capacity was supported the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences) project FWRU-2021-0006121040200025-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Trigub.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trigub, M.V., Gembukh, P.I., Vasnev, N.A. et al. Laser Monitor for Simultaneous Imaging in the VIS and Near-IR Spectral Regions. Atmos Ocean Opt 36, 415–420 (2023). https://doi.org/10.1134/S1024856023040176

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856023040176

Keywords:

Navigation