Skip to main content
Log in

Variability of Parameters of Single-Layer Cloud Fields over Western Siberia in Summer for the Period from 2001 to 2019 According to MODIS Data

  • REMOTE SENSING OF ATMOSPHERE, HYDROSPHERE, AND UNDERLYING SURFACE
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Long-term variability of the parameters of single-layer cloud fields over Western Siberia in summer from 2001 to 2019 is estimated based on MODIS data. The seasonal mean cloud cover and cloud parameters (optical thickness, effective radius of particles, waterpath, and top height) are estimated for different single-layer cloud types by the results of cloud classification from summer (June–August) daily satellite images of the target region. Parameters of single-layer clouds are analyzed for three latitudinal zones of Western Siberia: southern (<60° N), transitional (60°–65° N), and northern (>65° N). The linear trends in the cloud cover and in cloud parameters are found for different single-layer cloud types from the long-term data series. Convective and low-level clouds in the northern and transition zone of the region under study are characterized by maximal variability of the above parameters. The effect of anomalous blocking anticyclones on some cloud parameters is shown for different cloud types in the considered latitudinal zones of Western Siberia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. C. J. Stubenrauch, W. B. Rossow, S. Kinne, S. Ackerman, G. Cesana, H. Chepfer, L. Di Girolamo, B. Getzewich, A. Guignard, A. Heidinger, B. C. Maddux, W. P. Menzel, P. Minnis, C. Pearl, S. Platnick, C. Poulsen, J. Riedi, S. Sun-Mack, A. Walther, D. Winker, S. Zeng, and G. Zhao, “Assessment of global cloud datasets from satellites: Project and database initiated by the GEWEX Radiation Panel,” Bull. Am. Meteorol. Soc. 94 (7), 1031–1049 (2013).

    Article  ADS  Google Scholar 

  2. A. V. Chernokul’skii and I. I. Mokhov, “Comparative analysis of the parameters of global and zonal clouds according to different satellite and ground-based observations,” Issled. Zemli Kosmosa, No. 3, 12–29 (2010).

    Google Scholar 

  3. KN-01 SYNOP. Code for Prompt Transmission of Surface Meteorological Observation Data from the Roshydromet Station Network, Ed. by N.P. Fakhrutdinov (Gidromettsentr Rossii, Moscow, 2013) [in Russian].

    Google Scholar 

  4. D. P. Bespalov, A. M. Devyatkin, Yu. A. Dovgalyuk, V. I. Kondratyuk, Yu. V. Kuleshov, T. P. Svetlova, S. S. Suvorov, and V. I. Timofeev, Cloud Atlas (D’ART, St. Petersburg, 2011) [in Russian].

  5. Clouds and Cloudy Atmosphere. Handbook, Ed. by I.P. Mazin and A.Kh. Khrgian (Gidrometeoizdat, Leningrad, 1989) [in Russian].

    Google Scholar 

  6. R. A. Schiffer and W. B. Rossow, “The International Satellite Cloud Climatology Project (ISCCP): The first project of the world climate research programme,” Bull. Am. Meteorol. Soc. 64 (7), 779–784 (1983).

    Article  ADS  Google Scholar 

  7. C. Hahn, S. Warren, J. London, R. Jenne, and R. Chervin, Climatological Data for Clouds Over the Globe from Surface Observations (1988) (NDP-026) [Data set]. https://doi.org/10.3334/CDIAC/CLI.NDP026

  8. M. D. King, S. Platnick, W. P. Menzel, S. A. Ackerman, and P. A. Hubanks, “Spatial and temporal distribution of clouds observed by MODIS Onboard the Terra and Aqua Satellites,” IEEE Trans. Geosci. Remote Sens. 51, 3826–3852 (2013).

    Article  ADS  Google Scholar 

  9. V. S. Komarov, S. N. Il’in, A. V. Lavrinenko, N. Ya. Lomakina, E. V. Gorev, and D. P. Nakhtigalova, “Climate conditions of low clouds over the territory of Siberia and its modern change. Part 1. Features of low clouds conditions,” Opt. Atmos. Okeana 26 (7), 579–583 (2013).

    Google Scholar 

  10. V. S. Komarov, D. P. Nakhtigalova, S. N. Il’in, A. V. Lavrinenko, and N. Ya. Lomakina, “Climatic zoning of the Siberia territory according to the total and lower cloudiness conditions as a basis for construction of local cloud atmosphere models. Part 1. Methodical bases,” Opt. Atmos. Okeana 27 (10), 895–898 (2014).

    Google Scholar 

  11. V. S. Komarov, G. G. Matvienko, S. N. Il’in, and N. Ya. Lomakina, “Estimate of local features of long-term variations in cloud cover over the territory of Siberia using results of its climatic zoning according to total and low-level cloud regimes,” Atmos. Ocean. Opt. 28 (3), 265–272 (2015).

    Article  Google Scholar 

  12. A. S. Azarov, Yu. A. Borisov, B. G. Danelyan, V. V. Petrov, A. A. Sin’kevich, M. A. Strunin, B. A. Fomin, and V. Ch. Khattatov, “New opportunities in the study of atmospheric processes and environmental monitoring provided by the Yak-42D Roshydromet aircraft laboratory,” in Proc. of the All-Russian Open Conference on Cloud Physics and Active Effects on Hydrometeorological Processes (Pechatnyi dvor, Nal’chik, 2015), pp. 48–58 [in Russian].

  13. https://earthobservatory.nasa.gov/global-maps/MOD_ LSTAD_M. Cited July 20, 2022.

  14. E. V. Kharyutkina, S. V. Loginov, E. I. Usova, and Yu. V. Martynova, “Tendencies in changes of climate extremality in Western Siberia at the end of the XX century and the beginning of the XXI century,” Fundam. Prikl. Klimatol., No. 2, 45–65 (2019).

  15. A. V. Chernokulsky, I. I. Mokhov, and N. G. Nikitina, “Winter cloudiness variability over Northern Eurasia related to the Siberian High during 1966–2010,” Environ. Res. Lett. 8 (4), 045012 (2013).

    Article  ADS  Google Scholar 

  16. I. I. Mokhov, A. V. Chernokul’skii, and M. A. Osipov, “Atmospheric centers of action in the Northern and Southern Hemispheres: Features and variability,” Russ. Meteorol. Hydrol. 45 (11), 749–761 (2020).

    Article  Google Scholar 

  17. E. V. Shalina and L. P. Bobylev, “Sea ice transformations in the Arctic from satellite observations,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Kosmosa 14 (6), 28–41 (2017).

    Article  Google Scholar 

  18. T. B. Titkova and V. V. Vinogradova, “Climate changes in transitional natural areas of Russian northern regions and their display in landscape spectral characteristics,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Kosmosa 16 (5), 310–323 (2019).

    Article  Google Scholar 

  19. W. L. Barnes, T. S. Pagano, and V. V. Salomonson, “Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1,” IEEE Trans. Geosci. Remote Sens. 36 (20), 1088–1100.

  20. A. V. Skorokhodov, V. G. Astafurov, and T. V. Evsyutkin, “Application of statistical models of the image textures and physical parameters of clouds for their classification on satellite imagery MODIS,” Issled. Zemli Kosmosa, No. 4, 43–58 (2018).

    Google Scholar 

  21. S. A. Ackerman, R. Frey, A. Heidinger, Y. Li, A. Walther, S. Platnick, K. G. Meyer, G. Wind, N. Amarasinghe, C. Wang, B. Marchant, R. Holz, S. Dutcher, and P. Hubanks, EOS MODIS and SNPP VIIRS Cloud Properties: User Guide for the Climate Data Record Continuity Level-2 Cloud Top and Optical Properties Product (CLDPROP) (NASA, Greenbelt, USA, 2019).

    Google Scholar 

  22. B. C. Maddux, S. A. Ackerman, and S. Platnick, “Viewing geometry dependencies in MODIS cloud products,” J. Atmos. Ocean. Tech. 27, 1519–1528.

  23. R. Tapakis and A. G. Charalambides, “Equipment and methodologies for cloud detection and classification: A review,” Solar Energy 95, 392–430 (2013).

    Article  ADS  Google Scholar 

  24. I. I. Mokhov, ”Specific features of the 2010 summer heat formation in the European territory of Russia in the context of general climate changes and climate anomalies,” Izv., Atmos. Ocean. Phys. 47 (6), 653–660 (2011).

    Article  Google Scholar 

  25. N. P. Shakina and A. R. Ivanova, “The blocking anticyclones: The state of studies and forecasting,” Russ. Meteorol. Hydrol. 35 (11), 721–730 (2010).

    Article  Google Scholar 

  26. S. Mohr, J. Wandel, S. Lenggenhager, and O. Martius, “Relationship between atmospheric blocking and warm-season thunderstorms over Western and Central Europe,” Q. J. R. Meteorol. Soc. 145 (724), 3040–3056 (2019).

    Article  ADS  Google Scholar 

  27. A. Chernokulsky, A. Shikhov, A. Bykov, N. Kalinin, M. Kurgansky, B. Sherstyukov, and Y. Yarinich, “Diagnosis and modelling of two destructive derecho events in European Russia in the summer of 2010,” Atmos. Res. 267, 105928 (2019).

    Article  Google Scholar 

  28. Yu. L. Matveev, L. T. Matveev, and S. A. Soldatenko, Global Cloud Field (Gidrometeoizdat, Leningrad, 1986) [in Russian].

    Google Scholar 

  29. A. V. Chernokulsky, A. V. Eliseev, F. A. Kozlov, N. N. Korshunova, M. V. Kurgansky, I. I. Mokhov, V. A. Semenov, N. V. Shvets’, A. N. Shikhov, and Yu. I. Yarinich, “Atmospheric severe convective events in Russia: Changes observed from different data,” Meteorol. Gidrol., No. 5, 27–41 (2022).

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. G. Astafurov, A. V. Skorokhodov or K. V. Kuryanovich.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astafurov, V.G., Skorokhodov, A.V. & Kuryanovich, K.V. Variability of Parameters of Single-Layer Cloud Fields over Western Siberia in Summer for the Period from 2001 to 2019 According to MODIS Data. Atmos Ocean Opt 36, 329–336 (2023). https://doi.org/10.1134/S1024856023040048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856023040048

Keywords:

Navigation