Skip to main content
Log in

Stochastic 3D Globally Modified Navier–Stokes Equations: Weak Attractors, Invariant Measures and Large Deviations

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

This paper is mainly concerned with the asymptotic dynamics of non-autonomous stochastic 3D globally modified Navier–Stokes equations driven by nonlinear noise. Based on the well-posedness of such equations, we first show the existence and uniqueness of weak pullback mean random attractors. Then we investigate the existence of (periodic) invariant measures, the zero-noise limit of periodic invariant measures and their limit as the modification parameter \(N\rightarrow N_0\in (0,+\infty )\). Furthermore, under weaker conditions, we obtain the existence of invariant measures as well as their limiting behaviors when the external term is independent of time. Finally, by using weak convergence method, we establish the large deviation principle for the solution processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anh, C.T., Thanh, N.V., Tuyet, P.T.: Asymptotic behaviour of solutions to stochastic three-dimensional globally modified Navier–Stokes equations. Stochastics 95, 997–1021 (2023)

    MathSciNet  MATH  Google Scholar 

  2. Bao, J., Yuan, C.: Large deviations for neutral functional SDEs with jumps. Stochastics 87, 48–70 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Brzeźniak, Z., Dhariwal, G.: Stochastic tamed Navier–Stokes equations on \(\mathbb{R} ^3\): the existence and the uniqueness of solutions and the existence of an invariant measure. J. Math. Fluid Mech. 22, 1–54 (2020)

    MATH  Google Scholar 

  4. Brzeźniak, Z., Goldys, B., Jegaraj, T.: Large deviations and transitions between equilibria for stochastic Landau–Lifshitz–Gilbert equation. Arch. Ration. Mech. Anal. 226, 497–558 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Brzeźniak, Z., Motyl, E., Ondrejat, M.: Invariant measure for the stochastic Navier–Stokes equations in unbounded 2D domains. Ann. Probab. 45, 3145–3201 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Brzeźniak, Z., Ondreját, M., Seidler, J.: Invariant measures for stochastic nonlinear beam and wave equations. J. Differ. Equ. 260, 4157–4179 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Brzeźniak, Z., Peng, X., Zhai, J.: Well-posedness and large deviations for 2D Stochastic Navier–Stokes equations with jumps. J. Eur. Math. Soc. 25, 3093–3176 (2023)

    MathSciNet  MATH  Google Scholar 

  8. Budhiraja, A., Dupuis, P.: A variational representation for positive functionals of infinite dimensional Brownian motion. Probab. Math. Stat. 20, 39–61 (2000)

    MathSciNet  MATH  Google Scholar 

  9. Caraballo, T., Guo, B., Tuan, N.H., Wang, R.: Asymptotically autonomous robustness of random attractors for a class of weakly dissipative stochastic wave equations on unbounded domains. Proc. R. Soc. Edinb. Sect. A 151, 1700–1730 (2021)

    MathSciNet  MATH  Google Scholar 

  10. Caraballo, T., Real, J., Kloeden, P.E.: Unique strong solutions and \(V\)-attractors of a three dimensional system of globally modified Navier–Stokes equations. Adv. Nonlinear Stud. 6, 411–436 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Cerrai, S., Röckner, M.: Large deviations for stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term. Ann. Probab. 32, 1100–1139 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Chen, L., Dong, Z., Jiang, J., Zhai, J.: On limiting behavior of stationary measures for stochastic evolution systems with small noise intensity. Sci. China Math. 63, 1463–1504 (2020)

    MathSciNet  MATH  Google Scholar 

  13. Chen, Z., Li, X., Wang, B.: Invariant measures of stochastic delay lattice systems. Discret. Contin. Dyn. Syst. Ser. B 26, 3235–3269 (2021)

    MathSciNet  MATH  Google Scholar 

  14. Chen, Z., Wang, B.: Invariant measures of fractional stochastic delay reaction–diffusion equations on unbounded domains. Nonlinearity 34, 3969–4016 (2021)

    MathSciNet  MATH  Google Scholar 

  15. Chen, Z., Wang, B.: Existence, exponential mixing and convergence of periodic measures of fractional stochastic delay reaction–diffusion equations on \(\mathbb{R} ^n\). J. Differ. Equ. 336, 505–564 (2022)

    MATH  Google Scholar 

  16. Chen, Z., Wang, B.: Limit measures and ergodicity of fractional stochastic reaction–diffusion equations on unbounded domains. Stoch. Dyn. 22, 2140012 (2022)

    MathSciNet  MATH  Google Scholar 

  17. Chen, Z., Wang, B.: Limit measures of stochastic Schrödinger lattice systems. Proc. Am. Math. Soc. 150, 1669–1684 (2022)

    MATH  Google Scholar 

  18. Chen, Z., Yang, D., Zhong, S.: Weak mean attractor and periodic measure for stochastic lattice systems driven by Lévy noises. Stoch. Anal. Appl. 41, 509–544 (2023)

    MathSciNet  MATH  Google Scholar 

  19. Chueshov, I., Millet, A.: Stochastic 2D hydrodynamical type systems: well posedness and large deviations. Appl. Math. Optim. 61, 379–420 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Da Prato, G., Debussche, A.: 2D stochastic Navier–Stokes equations with a time-periodic forcing term. J. Dyn. Differ. Equ. 20, 301–335 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Da Prato, G., Flandoli, F., Priola, E., Röckner, M.: Strong uniqueness for stochastic evolution equations in Hilbert spaces perturbed by a bounded measurable drift. Ann. Probab. 41, 3306–3344 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Da Prato, G., Röckner, M.: A note on evolution systems of measures for time-dependent stochastic differential equations. Progr. Probab. 59, 115–122 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Deugoue, G., Medjo, T.T.: The stochastic 3D globally modified Navier–Stokes equations: existence, uniqueness and asymptotic behavior, Commun. Pure. Appl. Anal. 17, 2593–2621 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Dong, Z., Zhang, R.: 3D tamed Navier–Stokes equations driven by multiplicative Lévy noise: existence, uniqueness and large deviations. J. Math. Anal. Appl. 492, 124404 (2020)

    MathSciNet  MATH  Google Scholar 

  25. Duan, J., Millet, A.: Large deviations for the Boussinesq equations under random influences. Stoch. Process. Appl. 119, 2052–2081 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Gess, B., Liu, W., Schenke, A.: Random attractors for locally monotone stochastic partial differential equations. J. Differ. Equ. 269, 3414–3455 (2020)

    MathSciNet  MATH  Google Scholar 

  27. Hong, W., Li, S., Liu, W.: Freidlin–Wentzell type large deviation principle for multiscale locally monotone SPDEs. SIAM J. Math. Anal. 53, 6517–6561 (2021)

    MathSciNet  MATH  Google Scholar 

  28. Hu, W., Salins, M., Spiliopoulos, K.: Large deviations and averaging for systems of slow-fast stochastic reaction–diffusion equations. Stoch. Partial Differ. Equ. Anal. Comput. 7, 808–874 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Kim, J.: Periodic and invariant measures for stochastic wave equations. Electron. J. Differ. Equ. 2004, 1–30 (2004)

    MathSciNet  Google Scholar 

  30. Kim, J.: On the stochastic Benjamin–Ono equation. J. Differ. Equ. 228, 737–768 (2006)

    MathSciNet  MATH  Google Scholar 

  31. Kloeden, P.E., Langa, J.A., Real, J.: Pullback \(V\)-attractors of the 3-dimensional globally modified Navier–Stokes equations. Commun. Pure Appl. Anal. 6, 937–955 (2007)

  32. Li, D., Wang, B., Wang, X.: Periodic measures of stochastic delay lattice systems. J. Differ. Equ. 272, 74–104 (2021)

    MathSciNet  MATH  Google Scholar 

  33. Li, D., Wang, B., Wang, X.: Limiting behavior of invariant measures of stochastic delay lattice systems. J. Dyn. Differ. Equ. 34, 1453–1487 (2022)

    MathSciNet  MATH  Google Scholar 

  34. Liu, W.: Large deviations for stochastic evolution equations with small multiplicative noise. Appl. Math. Optim. 61, 27–56 (2010)

    MathSciNet  MATH  Google Scholar 

  35. Liu, R., Lu, K.: Statistical properties of 2D stochastic Navier–Stokes equations with time-periodic forcing and degenerate stochastic forcing, arXiv:2105.00598 (2021)

  36. Marín-Rubio, P., Márquez-Durán, A.M., Real, J.: Pullback attractors for globally modified Navier–Stokes equations with infinite delays. Discrete Contin. Dyn. Syst. 31, 779–796 (2011)

    MathSciNet  MATH  Google Scholar 

  37. Misiats, O., Stanzhytskyi, O., Yip, N.K.: Existence and uniqueness of invariant measures for stochastic reaction-diffusion equations in unbounded domains. J. Theor. Probab. 29, 996–1026 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Mohan, M.T.: Well posedness, large deviations and ergodicity of the stochastic 2D Oldroyd model of order one. Stoch. Process. Appl. 130, 4513–4562 (2020)

    MathSciNet  MATH  Google Scholar 

  39. Röckner, M., Zhang, X.: Tamed 3D Navier–Stokes equation: existence, uniqueness and regularity. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 12, 525–549 (2009)

    MathSciNet  MATH  Google Scholar 

  40. Röckner, M., Zhang, X.: Stochastic tamed 3D Navier–Stokes equations: existence, uniqueness and ergodicity. Probab. Theory Related Fields 145, 211–267 (2009)

    MathSciNet  MATH  Google Scholar 

  41. Röckner, M., Zhang, T., Zhang, X.: Large deviations for stochastic tamed 3D Navier–Stokes equations. Appl. Math. Optim. 61, 267–285 (2010)

    MathSciNet  MATH  Google Scholar 

  42. Sell, G.R., You, C.: Dynamics of Evolutionary Equations. Applied Mathematical Sciences, vol. 143. Springer, New York (2002)

    MATH  Google Scholar 

  43. Sritharan, S.S., Sundar, P.: Large deviations for the two-dimensional Navier–Stokes equations with multiplicative noise. Stoch. Proce. Appl. 116, 1636–1659 (2006)

    MathSciNet  MATH  Google Scholar 

  44. Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis. North-Holland, Amsterdam (1984)

    MATH  Google Scholar 

  45. Wang, B.: Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems. J. Differ. Equ. 253, 1544–1583 (2012)

    MathSciNet  MATH  Google Scholar 

  46. Wang, B.: Dynamics of stochastic reaction-diffusion lattice systems driven by nonlinear noise. J. Math. Anal. Appl. 477, 104–132 (2019)

    MathSciNet  MATH  Google Scholar 

  47. Wang, B.: Weak pullback attractors for mean random dynamical systems in Bochner spaces. J. Dyn. Differ. Equ. 31, 2177–2204 (2019)

    MathSciNet  MATH  Google Scholar 

  48. Wang, B.: Dynamics of fractional stochastic reaction–diffusion equations on unbounded domains driven by nonlinear noise. J. Differ. Equ. 268, 1–59 (2019)

    MathSciNet  MATH  Google Scholar 

  49. Wang, B.: Weak pullback attractors for stochastic Navier–Stokes equations with nonlinear diffusion terms. Proc. Amer. Math. Soc. 147, 1627–1638 (2019)

    MathSciNet  MATH  Google Scholar 

  50. Wang, B.: Large deviation principles of stochastic reaction–diffusion lattice systems, arXiv:2305.06510 (2023)

  51. Wang, R., Caraballo, T., Tuan, N.H.: Asymptotic stability of evolution systems of probability measures for nonautonomous stochastic systems: theoretical results and applications. Proc. Am. Math. Soc. 151, 2449–2458 (2023)

    MathSciNet  MATH  Google Scholar 

  52. Wang, R., Guo, B., Wang, B.: Well-posedness and dynamics of fractional FitzHugh–Nagumo systems on \(\mathbb{R} ^n\) driven by nonlinear noise. Sci. China Math. 64, 2395–2436 (2021)

    MathSciNet  MATH  Google Scholar 

  53. Wang, X., Kloeden, P.E., Han, X.: Stochastic dynamics of a neural field lattice model with state dependent nonlinear noise. Nonlinear Differ. Equ. Appl. 28, 1–31 (2021)

    MathSciNet  MATH  Google Scholar 

  54. Wang, R., Wang, B.: Random dynamics of \(p\)-Laplacian lattice systems driven by infinite-dimensional nonlinear noise. Stoch. Process. Appl. 130, 7431–7462 (2020)

    MathSciNet  MATH  Google Scholar 

  55. Xu, J., Caraballo, T.: Long time behavior of stochastic nonlocal partial differential equations and Wong–Zakai approximations. SIAM J. Math. Anal. 54, 2792–2844 (2022)

    MathSciNet  MATH  Google Scholar 

  56. Yang, D., Chen, Z., Caraballo, T.: Dynamics of a globally modified Navier–Stokes model with double delay. Z. Angew. Math. Phys. 73, 1–32 (2022)

    MathSciNet  MATH  Google Scholar 

  57. Zeidler, E.: Nonlinear Functional Analysis and its Applications, II/A, B, Nonlinear Monotone Operators. Springer, New York (1990)

    MATH  Google Scholar 

  58. Zhao, C., Wang, J., Caraballo, T.: Invariant sample measures and random Liouville type theorem for the two-dimensional stochastic Navier–Stokes equations. J. Differ. Equ. 317, 474–494 (2022)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the editor and referees for their very valuable suggestions and comments.

Funding

The work is partially supported by the NNSF of China (11471190, 11971260), the SDNSF (ZR2014AM002), the Spanish Ministerio de Ciencia e Innovación under project PID2021-122991NB-C21, and Junta de Andalucía (Spain) under Project P18-FR-4509.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dandan Yang.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caraballo, T., Chen, Z. & Yang, D. Stochastic 3D Globally Modified Navier–Stokes Equations: Weak Attractors, Invariant Measures and Large Deviations. Appl Math Optim 88, 74 (2023). https://doi.org/10.1007/s00245-023-10050-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-023-10050-0

Keywords

Mathematics Subject Classification

Navigation