Skip to main content
Log in

Chronic toxic effects of fragmented polyvinyl chloride on the water flea Moina macrocopa

  • Original Article
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Background

Although many studies have reported the detrimental potential of commercially synthesized sphere types of microplastics (MPs) and nanoplastics (NPs) on aquatic ecosystems, limited information is available on fragmented MPs and their chronic effects.

Objective

This study aimed to evaluate potentially harmful effects of fragmented polyvinyl chloride (PVC; < 20 μm) in a range from 0.001 to 500 μg L−1 on a water flea model, Moina macrocopa. Physiological and biochemical effects of fragmented PVC were studied by analyzing the mortality, growth, and reproduction parameters, with evidence retrieved from biochemical components for 14 days.

Results

Waterborne exposure to PVC fragments resulted in temporal bioconcentration through ingestion. The PVC fragments were egested in feces. The mortality was drastically increased by relatively higher concentrations (> 10 μg L−1) of fragmented PVC compared to that of the control group. Two concentrations of PVC fragments (100 and 500 μg L−1) significantly induced growth retardation, with expansion of intermolt periods and decreased the first day of reproduction and the number of neonates per brood. Exposure to PVC fragments induced fluctuations in oxidative status and antioxidant components, with inhibition in acetylcholinesterase activity.

Conclusion

These results imply that fragmentation of MPs can induce a significant physiological and biochemical effects to aquatic crustaceans by inducing strong oxidative stress and impairing antioxidant defense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adhitama N, Kato Y, Matsuura T, Watanabe H (2020) Roles of and cross-talk between ecdysteroid and sesquiterpenoid pathways in embryogenesis of branchiopod crustacean Daphnia magna. PLoS ONE 15:e0239893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alimi OS, Farner BJ, Hernandez LM, Tufenkji N (2018) Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport. Environ Sci Technol 52:1704–1724

    Article  CAS  PubMed  Google Scholar 

  • Aljaibachi R, Callaghan A (2018) Impact of polystyrene microplastics on Daphnia magna mortality and reproduction in relation to food availability. PeerJ 6:e4601

    Article  PubMed  PubMed Central  Google Scholar 

  • An D, Na J, Song J, Jung J (2021) Size-dependent chronic toxicity of fragmented polyethylene microplastics to Daphnia magna. Chemosphere 271:129591

    Article  CAS  PubMed  Google Scholar 

  • Barbosa F, Adeyemi JA, Bocato MZ, Comas A, Campiglia A (2020) A critical viewpoint on current issues, limitations, and future research needs on micro- and nanoplastic studies: from the detection to the toxicological assessment. Environ Res 182:109089

    Article  CAS  PubMed  Google Scholar 

  • Bergami E et al (2016) Nano-sized polystyrene affects feeding, behavior and physiology of brine shrimp Artemia franciscana larvae. Ecotoxicol Environ Saf 123:18–25

    Article  CAS  PubMed  Google Scholar 

  • Besseling E, Wang B, Lürling M, Koelmans AA (2014) Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environ Sci Technol 48:12336–12343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosker T, Olthof G, Vijver MG, Baas J, Barmentlo SH (2019) Significant decline of Daphnia magna population biomass due to microplastic exposure. Environ Pollut 250:669–675

    Article  CAS  PubMed  Google Scholar 

  • Brun NR, Beenakker MMT, Hunting ER, Ebert D, Vijver MG (2017) Brood pouch-mediated polystyrene nanoparticle uptake during Daphnia magna embryogenesis. Nanotoxicology 11:1059–1069

    Article  CAS  PubMed  Google Scholar 

  • Cui R, Kim SW, An Y-J (2017) Polystyrene nanoplastics inhibit reproduction and induce abnormal embryonic development in the freshwater crustacean Daphnia galeata. Sci Rep 7:12095

    Article  PubMed  PubMed Central  Google Scholar 

  • De Felice B, Sugni M, Casati L, Parolini M (2022) Molecular, biochemical and behavioral responses of Daphnia magna under long-term exposure to polystyrene nanoplastics. Environ Int 164:107264

    Article  PubMed  Google Scholar 

  • Eom H-J, Nam S-E, Rhee J-S (2020) Polystyrene microplastics induce mortality through acute cell stress and inhibition of cholinergic activity in a brine shrimp. Mol Cell Toxicol 16:233–243

    Article  CAS  Google Scholar 

  • Gambardella C et al (2017) Effects of polystyrene microbeads in marine planktonic crustaceans. Ecotoxicol Environ Saf 145:250–257

    Article  CAS  PubMed  Google Scholar 

  • Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3:19–24

    Article  Google Scholar 

  • González-Pleiter M et al (2019) Secondary nanoplastics released from a biodegradable microplastic severely impact freshwater environments. Environ Sci Nano 6:1382–1392

    Article  Google Scholar 

  • Gouin T (2020) Toward an improved understanding of the ingestion and trophic transfer of microplastic particles: critical review and implications for future research. Environ Toxicol Chem 39:1119–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horton AA et al (2018) Acute toxicity of organic pesticides to Daphnia magna is unchanged by co-exposure to polystyrene microplastics. Ecotoxicol Environ Saf 166:26–34

    Article  CAS  PubMed  Google Scholar 

  • Imhof HK, Rusek J, Thiel M, Wolinska J, Laforsch C (2017) Do microplastic particles affect Daphnia magna at the morphological, life history and molecular level? PLoS ONE 12:e0187590

    Article  PubMed  PubMed Central  Google Scholar 

  • Ivleva NP, Wiesheu AC, Niessner R (2017) Microplastic in aquatic ecosystems. Angew Chem Int Ed 56:1720–1739

    Article  CAS  Google Scholar 

  • Jemec A, Horvat P, Kunej U, Bele M, Kržan A (2016) Uptake and effects of microplastic textile fibers on freshwater crustacean Daphnia magna. Environ Pollut 219:201–209

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Rhee J-S (2021) Biochemical and physiological responses of the water flea Moina macrocopa to microplastics: a multigenerational study. Mol Cell Toxicol 17:523–532

    Article  CAS  Google Scholar 

  • Koelmans AA et al (2019) Microplastics in freshwaters and drinking water: critical review and assessment of data quality. Water Res 155:410–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert S, Wagner M (2016) Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere 145:265–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebreton L et al (2018) Evidence that the great Pacific garbage patch is rapidly accumulating plastic. Sci Rep 8:4666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee D-H, Lee S, Rhee J-S (2021) Consistent exposure to microplastics induces age-specific physiological and biochemical changes in a marine mysid. Mar Pollut Bull 162:111850

    Article  CAS  PubMed  Google Scholar 

  • Li C, Busquets R, Campos LC (2020) Assessment of microplastics in freshwater systems: a review. Sci Total Environ 707:135578

    Article  CAS  PubMed  Google Scholar 

  • Lin W et al (2019) Investigating the toxicities of different functionalized polystyrene nanoplastics on Daphnia magna. Ecotoxicol Environ Saf 180:509–516

    Article  CAS  PubMed  Google Scholar 

  • Liu Z et al (2018) Age-dependent survival, stress defense, and AMPK in Daphnia pulex after short-term exposure to a polystyrene nanoplastic. Aquat Toxicol 204:1–8

    Article  CAS  PubMed  Google Scholar 

  • Liu Z et al (2019) Polystyrene nanoplastic exposure induces immobilization, reproduction, and stress defense in the freshwater cladoceran Daphnia pulex. Chemosphere 215:74–81

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Liu L, Huang J, Gu L, Sun Y, Zhang L, Lyu K, Yang Z (2022) The response of life history defense of cladocerans under predation risk varies with the size and concentration of microplastics. J Hazard Mater 427:127913

    Article  CAS  PubMed  Google Scholar 

  • Martins A, Guilhermino L (2018) Transgenerational effects and recovery of microplastics exposure in model populations of the freshwater cladoceran Daphnia magna Straus. Sci Total Environ 631–632:421–428

    Article  PubMed  Google Scholar 

  • Nasser F, Lynch I (2016) Secreted protein eco-corona mediates uptake and impacts of polystyrene nanoparticles on Daphnia magna. J Proteom 137:45–51

    Article  CAS  Google Scholar 

  • OECD (2012) OECD Guideline for Testing of Chemicals, 211 Daphnia magna, Reproduction Test. OECD, Paris

  • Ogonowski M, Schür C, Jarsén Å, Gorokhova E (2016) The effects of natural and anthropogenic microparticles on individual fitness in Daphnia magna. PLoS ONE 11:e0155063

    Article  PubMed  PubMed Central  Google Scholar 

  • Rehse S, Kloas W, Zarfl C (2016) Short-term exposure with high concentrations of pristine microplastic particles leads to immobilisation of Daphnia magna. Chemosphere 153:91–99

    Article  CAS  PubMed  Google Scholar 

  • Renzi M, Grazioli E, Blaskovic A (2019) Effects of different microplastic types and surfactant-microplastic mixtures under fasting and feeding conditions: a case study on Daphnia magna. Bull Environ Contam Toxicol 103:367–373

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro FG, O’Brien J, Galloway TS, Thomas KV (2019) Accumulation and fate of nano- and micro-plastics and associated contaminants in organisms. Trends Analyt Chem 111:139–147

    Article  CAS  Google Scholar 

  • Rist S, Baun A, Hartmann NB (2017) Ingestion of micro- and nanoplastics in Daphnia magna–quantification of body burdens and assessment of feeding rates and reproduction. Environ Pollut 228:398–407

    Article  CAS  PubMed  Google Scholar 

  • SAPEA (2019) Evidence on microplastics does not yet point to widespread risk, Science Advice for Policy by European Academies – A Scientific Perspective on Microplastics in Nature and Society, SAPEA, Berlin

  • Schymanski D, Goldbeck C, Humpf H-U, Fürst P (2018) Analysis of microplastics in water by micro-Raman spectroscopy: release of plastic particles from different packaging into mineral water. Water Res 129:154–162

    Article  CAS  PubMed  Google Scholar 

  • Setälä O, Fleming-Lehtinen V, Lehtiniemi M (2014) Ingestion and transfer of microplastics in the planktonic food web. Environ Pollut 185:77–83

    Article  PubMed  Google Scholar 

  • Ter Halle A et al (2016) Understanding the fragmentation pattern of marine plastic debris. Environ Sci Technol 50:5668–5675

    Article  PubMed  Google Scholar 

  • Triebskorn R et al (2019) Relevance of nano and microplastics for freshwater ecosystems: a critical review. Trends Anal Chem 110:375–392

    Article  CAS  Google Scholar 

  • Varó I et al (2019) Time-dependent effects of polystyrene nanoparticles in brine shrimp Artemia franciscana at physiological, biochemical and molecular levels. Sci Total Environ 675:570–580

    Article  PubMed  Google Scholar 

  • Verla AW, Enyoh CE, Verla EN, Nwarnorh KO (2019) Microplastic–toxic chemical interaction: a review study on quantified levels, mechanism and implication. SN Appl Sci 1:1400

    Article  Google Scholar 

  • Yoo J-W, Cho H, Jeon M, Jeong C-B, Jung J-H, Lee Y-M (2021) Effects of polystyrene in the brackish water flea Diaphanosoma celebensis: size-dependent acute toxicity, ingestion, egestion, and antioxidant response. Aquat Toxicol 235:105821

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by “Risk assessment to prepare standards for protecting marine ecosystem–KIMST–20220383” funded by the Ministry of Oceans and Fisheries, South Korea. This research was also supported by the Core Research Institute (CRI) Program, the Basic Science Research Program through the National Research Foundation of Korea (NRF), Ministry of Education (NRF–2017R1A6A1A06015181).

Author information

Authors and Affiliations

Authors

Contributions

JK and J-SR designed the experiment. JK, YS, JJ, and J-HJ performed the experiments and analyzed results. JK and J-SR wrote the manuscript.

Corresponding author

Correspondence to Jae-Sung Rhee.

Ethics declarations

Conflict of interest

Jaehee Kim declares that she has no conflict of interest. Yugyeong Sim declares that she has no conflict of interest. Jinyoung Jeong declares that she has no conflict of interest. Jee-Hyun Jung declares that she has no conflict of interest. Jae-Sung Rhee declares that he has no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Sim, Y., Jeong, J. et al. Chronic toxic effects of fragmented polyvinyl chloride on the water flea Moina macrocopa. Mol. Cell. Toxicol. (2023). https://doi.org/10.1007/s13273-023-00372-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13273-023-00372-z

Keywords

Navigation