Skip to main content

Advertisement

Log in

GALNT2, an O-glycosylating enzyme, is a critical regulator of radioresistance of non-small cell lung cancer: evidence from an integrated multi-omics analysis

  • Research
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Radioresistance is the primary reason for radiotherapy failure in non-small cell lung cancer (NSCLC) patients. Glycosylation-related alterations are critically involved in tumor radioresistance. However, the relationship between glycosylation and NSCLC radioresistance is unclear. Here, we generated radioresistant NSCLC cell models by using fractionated irradiation. The aberrant glycosylation involved in NSCLC-related radioresistance was elucidated by transcriptomic, proteomic, and glycomic analyses. We conducted in vitro and in vivo investigations for determining the biological functions of glycosylation. Additionally, its downstream pathways and upstream regulators were inferred and verified. We demonstrated that mucin-type O-glycosylation and the O-glycosylating enzyme GALNT2 were highly expressed in radioresistant NSCLC cells. GALNT2 was found to be elevated in NSCLC tissues; this elevated level showed a remarkable association with response to radiotherapy treatment as well as overall survival. Functional experiments showed that GALNT2 knockdown improved NSCLC radiosensitivity via inducing apoptosis. By using a lectin pull-down system, we revealed that mucin-type O-glycans on IGF1R were modified by GALNT2 and that IGF1R could affect the expression of apoptosis-related genes. Moreover, GALNT2 knockdown-mediated in vitro radiosensitization was enhanced by IGF1R inhibition. According to a miRNA array analysis and a luciferase reporter assay, miR-30a-5p negatively modulated GALNT2. In summary, our findings established GALNT2 as a key contributor to the radioresistance of NSCLC. Therefore, targeting GALNT2 may be a promising therapeutic strategy for NSCLC.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analyzed in this study are present in this published article and its supplementary information files.

Abbreviations

GALNT2:

N-acetylgalactosaminyltransferase 2

qRT-PCR:

real-time PCR

VVA:

Vicia villosa lectin

IHC:

immunohistochemistry

NSCLC:

non-small cell lung cancer

3′-UTR:

3′-untranslated region

References

  • Alfaro-Arnedo E, López IP, Piñeiro-Hermida S, Canalejo M, Gotera C, Sola JJ, Roncero A, Peces-Barba G, Ruíz-Martínez C, Pichel JG. IGF1R acts as a cancer-promoting factor in the tumor microenvironment facilitating lung metastasis implantation and progression. Oncogene. 2022;10:1–15.

    Google Scholar 

  • Beaman EM, Carter DRF, Brooks SA. GALNTs: master regulators of metastasis-associated epithelial-mesenchymal transition (EMT)? Glycobiology. 2022;32:556–79.

    Article  CAS  PubMed  Google Scholar 

  • Cai H, Zou J, Wang W, Yang A. BMP2 induces hMSC osteogenesis and matrix remodeling. Mol Med Rep. 2021;23:125.

    Article  CAS  PubMed  Google Scholar 

  • Cao L, Zhou Y, Li X, Lin S, Tan Z, Guan F. Integrating transcriptomics, proteomics, glycomics and glycoproteomics to characterize paclitaxel resistance in breast cancer cells. J Proteomics. 2021;243:104266.

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Tang J, Xu S, Zhang W, Jiang H. miR-30a-5p inhibits proliferation and migration of lung squamous cell carcinoma cells by targeting FOXD1. Biomed Res Int. 2020;2020:2547902.

    PubMed  PubMed Central  Google Scholar 

  • De Bousser E, Meuris L, Callewaert N, Festjens N. Human T cell glycosylation and implications on immune therapy for cancer. Hum Vaccin Immunother. 2020;16:2374–88.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong X, Chen C, Deng X, Liu Y, Duan Q, Peng Z, Luo Z, Shen L. A novel mechanism for C1GALT1 in the regulation of gastric cancer progression. Cell Biosci. 2021;11:166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong X, Luo Z, Wang Y, Meng L, Duan Q, Qiu L, Peng F, Shen L. Altered O-glycosylation is associated with inherent radioresistance and malignancy of human laryngeal carcinoma. Exp Cell Res. 2018;362:302–10.

    Article  CAS  PubMed  Google Scholar 

  • Gabay G, Faigenboim A, Dahan Y, Izhaki Y, Itkin M, Malitsky S, Elkind Y, Flaishman MA. Transcriptome analysis and metabolic profiling reveal the key role of α-linolenic acid in dormancy regulation of European pear. J Exp Bot. 2019;70:1017–31.

    Article  CAS  PubMed  Google Scholar 

  • Guan L, Fan P, Liu X, Zhou M, Wu Y, Liu R, Liu Y, Bai H. Maternal GALNT2 variations affect blood pressure, atherogenic index, and fetal growth, depending on bmi in gestational diabetes mellitus. Front Endocrinol (Lausanne). 2021;12:690229.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guarino MP, Altomare A, Barera S, Locato V, Cocca S, Franchin C, Arrigoni G, Vannini C, Grossi S, Campomenosi P, Pasqualetti V, Bracale M, Alloni R, De Gara L, Cicala M. Effect of Inulin on proteome changes induced by pathogenic lipopolysaccharide in human colon. PLoS One. 2017;12:e0169481.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Sun W, Gong T, Chai Y, Wang J, Hui B, Li Y, Song L, Gao Y. miR-30a radiosensitizes non-small cell lung cancer by targeting ATF1 that is involved in the phosphorylation of ATM. Oncol Rep. 2017;37:1980–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho WL, Chou CH, Jeng YM, Lu MY, Yang YL, Jou ST, Lin DT, Chang HH, Lin KH, Hsu WM, Huang MC. GALNT2 suppresses malignant phenotypes through IGF-1 receptor and predicts favorable prognosis in neuroblastoma. Oncotarget. 2014;5:12247–59.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Yang X, Lu Y, Zhao Y, Meng R, Zhang S, Dong X, Xu S, Wu G. UBE2O targets Mxi1 for ubiquitination and degradation to promote lung cancer progression and radioresistance. Cell Death Differ. 2021;28:671–84.

    Article  CAS  PubMed  Google Scholar 

  • Jie X, Fong WP, Zhou R, Zhao Y, Meng R, Zhang S, Dong X, Zhang T, Yang K, Wu G, Xu S. USP9X-mediated KDM4C deubiquitination promotes lung cancer radioresistance by epigenetically inducing TGF-β2 transcription. Cell Death Differ. 2021;28:2095–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi HJ, Hansen L, Narimatsu Y, Freeze HH, Henrissat B, Bennett E, Wandall HH, Clausen H, Schjoldager KT. Glycosyltransferase genes that cause monogenic congenital disorders of glycosylation are distinct from glycosyltransferase genes associated with complex diseases. Glycobiology. 2018;28:284–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato K, Hansen L, Clausen H. Polypeptide N-acetylgalactosaminyltransferase-associated Phenotypes in Mammals. Molecules. 2021;26:5504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Zhang Y, Zhang M, Wang Y. GALNT2 regulates ANGPTL3 cleavage in cells and in vivo of mice. Sci Rep. 2020;10:16168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marucci A, Antonucci A, De Bonis C, Mangiacotti D, Scarale MG, Trischitta V, Di Paola R. GALNT2 as a novel modulator of adipogenesis and adipocyte insulin signaling. Int J Obes (Lond). 2019;43:2448–57.

    Article  PubMed  Google Scholar 

  • Mendelevich A, Vinogradova S, Gupta S, Mironov AA, Sunyaev SR, Gimelbrant AA. Replicate sequencing libraries are important for quantification of allelic imbalance. Nat Commun. 2021;12:3370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mereiter S, Balmaña M, Campos D, Gomes J, Reis CA. Glycosylation in the era of cancer-targeted therapy: where are we heading? Cancer Cell. 2019;36:6–16.

    Article  CAS  PubMed  Google Scholar 

  • Pang J, Li P, He H, Xu S, Liu Z. Molecularly imprinted polymers outperform lectin counterparts and enable more precise cancer diagnosis. Chem Sci. 2022;13:4589–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phan T, Nguyen VH, A'Lincourt Salazar M, Wong P, Diamond DJ, Yim JH, Melstrom LG. Inhibition of autophagy amplifies baicalein-induced apoptosis in human colorectal cancer. Mol Ther Oncolytics. 2020;19:1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues JG, Duarte HO, Reis CA, Gomes J. Aberrant protein glycosylation in cancer: implications in targeted therapy. Biochem Soc Trans. 2021;49:843–54.

    Article  CAS  PubMed  Google Scholar 

  • Shen L, Xia M, Deng X, Ke Q, Zhang C, Peng F, Dong X, Luo Z. A lectin-based glycomic approach identifies FUT8 as a driver of radioresistance in oesophageal squamous cell carcinoma. Cell Oncol (Dordr). 2020;43:695–707.

    Article  CAS  PubMed  Google Scholar 

  • Silsirivanit A. Glycosylation markers in cancer. Adv Clin Chem. 2019;89:189–213.

    Article  CAS  PubMed  Google Scholar 

  • Simpson AD, Soo YWJ, Rieunier G, Aleksic T, Ansorge O, Jones C, Macaulay VM. Type 1 IGF receptor associates with adverse outcome and cellular radioresistance in paediatric high-grade glioma. Br J Cancer. 2020;122:624–9.

    Article  CAS  PubMed  Google Scholar 

  • Sun X, He Z, Guo L, Wang C, Lin C, Ye L, Wang X, Li Y, Yang M, Liu S, Hua X, Wen W, Long Z, Zhang W, Li H, Jian Y, Zhu Z, Wu X, Lin H. ALG3 contributes to stemness and radioresistance through regulating glycosylation of TGF-β receptor II in breast cancer. J Exp Clin Cancer Res. 2021;40:149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Z, Xue H, Wei Y, Wang C, Yu R, Wang S, Xu J, Qian M, Meng Q, Li G. Mucin O-glycosylating enzyme GALNT2 facilitates the malignant character of glioma by activating the EGFR/PI3K/Akt/mTOR axis. Clin Sci (Lond). 2019;133:1167–84.

    Article  CAS  PubMed  Google Scholar 

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  • Wang W, Sun R, Zeng L, Chen Y, Zhang N, Cao S, Deng S, Meng X, Yang S. GALNT2 promotes cell proliferation, migration, and invasion by activating the Notch/Hes1-PTEN-PI3K/Akt signaling pathway in lung adenocarcinoma. Life Sci. 2021;276:119439.

    Article  CAS  PubMed  Google Scholar 

  • Werner H, Meisel-Sharon S, Bruchim I. Oncogenic fusion proteins adopt the insulin-like growth factor signaling pathway. Mol Cancer. 2018;17:28.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu Q, Tian AL, Kroemer G, Kepp O. Autophagy induction by IGF1R inhibition with picropodophyllin and linsitinib. Autophagy. 2021;17:2046–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Rao S, Cao R, Xiao S, Cui X, Ye L. miR-30a-5p suppresses lung squamous cell carcinoma via ATG5 - mediated autophagy. Aging (Albany NY). 2021;13:17462–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Wang Z, Zheng Q, Li J. GALNT2/14 overexpression correlate with prognosis and methylation: potential therapeutic targets for lung adenocarcinoma. Gene. 2021;790:145689.

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Deng W, Lu C, He M, Yan H. SMRT sequencing of full-length transcriptome and gene expression analysis in two chemical types of Pogostemon cablin (Blanco) Benth. PeerJ. 2022;10:e12940.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Zeng B, Li Y, Wang H, Zhang X. LINC02532 contributes to radiosensitivity in clear cell renal cell carcinoma through the miR-654-5p/YY1 Axis. Molecules. 2021;26:7040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The present work was aided by the Natural Science Foundation of Hubei Province (2022CFB491), the Advantages Discipline Group (Medicine) Project in Higher Education of Hubei Province (2021-2025) (2022XKQT2), and the National Undergraduate Training Program for Innovation and Entrepreneurship (S202210929015).

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: all authors. Material preparation and data collection and analysis: Xiaoxia Dong, Yahui Leng, Tian Tian, Qing Hu, Shuang Chen, and Yufeng Liu. First draft of the manuscript: Li Shen. All authors have commented on previous manuscript versions and have read and approved the final version.

Corresponding author

Correspondence to Li Shen.

Ethics declarations

Ethics approval and consent to participate

The Ethics Committee of the Hubei University of Medicine (HBMU) approved the present research. Following the Declaration of Helsinki, all the included subjects provided their written informed consent. The Animal Ethics Committee of the HBMU approved all animal experiments.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Online Resource 1:

Table S1. Sequence information of mimics and shRNAs (DOC 28 kb)

Online Resource 2:

Table S2. Sequences of primer pairs used for qRT-PCR (DOC 29 kb)

Online Resource 3:

Table S3. DEGs identified by RNA-seq (XLS 3293 kb)

Online Resource 4:

Table S4. Differentially expressed proteins identified by iTRAQ (XLSX 114 kb)

Online Resource 5:

Table S5. Summary of mean fluorescence intensities (XLS 42 kb)

Online Resource 6:

Table S6. Differentially expressed miRNAs identified by miRNA array (XLSX 13 kb)

ESM 7

(DOC 24 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, X., Leng, Y., Tian, T. et al. GALNT2, an O-glycosylating enzyme, is a critical regulator of radioresistance of non-small cell lung cancer: evidence from an integrated multi-omics analysis. Cell Biol Toxicol 39, 3159–3174 (2023). https://doi.org/10.1007/s10565-023-09825-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-023-09825-6

Keywords

Navigation