Skip to main content
Log in

Comparative Characterization of Aqueous Suspensions of Magnetic Iron Oxide Nanoparticles with Different Phase Compositions

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The interaction of iron oxide nanoparticles with an aqueous medium has been studied. The composition of the nanoparticles corresponds to magnetite–maghemite solid solutions with different Fe2+/Fe3+ ratios. Nanoparticles that most closely correspond to the composition of maghemite (γ-Fe2O3) have largest hydrodynamic diameters and cause a drastic decrease in the pH of the dispersion medium during the dispersion of the powders in water. Nanoparticles that have a phase composition of a solid solution corresponding to the middle of the magnetite–maghemite series are characterized by a gradual and less pronounced decrease in pH. It has been shown that dilution of aqueous suspensions obtained from preliminarily dried powders within a concentration range of 100–0.001 mg/L followed by sonication leads to a significant increase in the hydrodynamic diameter of iron oxide particles. A possible mechanism of the studied interaction of nanoparticles with the aqueous medium has been considered. This mechanism comprises the hydration of Lewis acid sites formed by iron ions and changes in the character of the dissociation of hydroxyl groups depending on the pH of a suspension. The effect of surface passivation of the studied nanopowders with oleic acid on the processes under consideration has been investigated. The results obtained make it possible to predict the aggregative stability and a number of other characteristics of the studied suspensions being diluted with water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Sankaranarayanan, S.A., Thomas, A., Revi, N., et al., Iron oxide nanoparticles for theranostic applications - Recent advances, J. Drug Delivery Sci. Technol., 2022, vol. 70, p. 103196. https://doi.org/10.1016/j.jddst.2022.103196

    Article  CAS  Google Scholar 

  2. Yeste, M.P., Fernández-Ponce, C., Félix, E., et al., Solvothermal synthesis and characterization of ytterbium/iron mixed oxide nanoparticles with potential functionalities for applications as multiplatform contrast agent in medical image techniques, Ceram. Int., 2022, vol. 48, no. 21, p. 31191. https://doi.org/10.1016/j.ceramint.2022.06.194

    Article  CAS  Google Scholar 

  3. Ezealigo, U.S., Ezealigo, B.N., Aisida, S.O., et al., Iron oxide nanoparticles in biological systems: Antibacterial and toxicology perspective, J. Colloid Interface Sci., 2021, vol. 4, p. 100027. https://doi.org/10.1016/j.jciso.2021.100027

    Article  Google Scholar 

  4. Tombuloglu, H., Slimani, Y., Akhtar, S., et al., The size of iron oxide nanoparticles determines their translocation and effects on iron and mineral nutrition of pumpkin (Cucurbita maxima L.), J. Magn. Magn. Mater., 2022, vol. 564, no. 1, p. 170058. https://doi.org/10.1016/j.jmmm.2022.170058

    Article  CAS  Google Scholar 

  5. Kovalenko, A.S., Nikolaev, A.M., Khamova, T.V., et al., Synthesis of iron oxide magnetic nanoparticles and their effect on growth, productivity, and quality of tomato, Glass Phys. Chem., 2021, vol. 47, no. 1, p. 67. https://doi.org/10.1134/S1087659621070063

    Article  Google Scholar 

  6. Kropacheva, T.N., Antonova, A.S., and Zhuravle-va, A.Y., Modification of the surface of magnetic iron oxides with phosphonic complexones, Prot. Met. Phys. Chem. Surf., 2020, vol 56, no. 3, p. 473. https://doi.org/10.1134/S2070205120030223

    Article  CAS  Google Scholar 

  7. Ikaev, A.M., Mingalyov, P.G., and Lisichkin, G.V., Chemical modification of iron oxide surface with organosilicon and organophosphorous compounds, Colloid J., 2007, vol. 69, no. 6, p. 741. https://doi.org/10.1134/S1061933X07060105

    Article  CAS  Google Scholar 

  8. Mikhaylov, V.I., Kryuchkova, A.V., Sitnikov, P.A., et al., Magnetite hydrosols with positive and negative surface charge of nanoparticles: Stability and effect on the lifespan of Drosophila melanogaster, Langmuir, 2020, vol. 36, no. 16, p. 4405. https://doi.org/10.1021/acs.langmuir.0c00605

    Article  CAS  PubMed  Google Scholar 

  9. Yang, H.-M., Park, C.W., Ahn, T., et al., A direct surface modification of iron oxide nanoparticles with various poly(amino acid)s for use as magnetic resonance probes, J. Colloid Interface Sci., 2013, vol. 391, p. 158. https://doi.org/10.1016/j.jcis.2012.09.044

    Article  CAS  PubMed  Google Scholar 

  10. Masuku, M., Ouma, L., and Pholosi, A., Microwave assisted synthesis of oleic acid modified magnetite nanoparticles for benzene adsorption, Environ. Nanotechnol., Monit. Manage., 2021, vol. 15, p. 100429. https://doi.org/10.1016/j.enmm.2021.100429

    Article  CAS  Google Scholar 

  11. Mengesha, A., Hoerres, A., and Mahajan, P., Cytocompatibility of oleic acid modified iron oxide nanoparticles, Mater. Lett., 2022, vol. 323, p. 132528. https://doi.org/10.1016/j.matlet.2022.132528

    Article  CAS  Google Scholar 

  12. Asif, S., Kaur, G., Sharma, S., et al., Oleic acid magnetic iron oxide nanoparticles improve iron uptake by the modification of NADH-HCF (III) oxidoreductase without affecting cellular viability, Gene Rep., 2020, vol. 21, p. 100837. https://doi.org/10.1016/j.genrep.2020.100837

    Article  CAS  Google Scholar 

  13. Gambhir, R.P., Rohiwal, S.S., and Tiwari, A.P., Multifunctional surface functionalized magnetic iron oxide nanoparticles for biomedical applications: A review, Applied Surface Science Advances, 2022, vol. 11, p. 100303. https://doi.org/10.1016/j.apsadv.2022.100303

    Article  Google Scholar 

  14. Wu, K., Liu, J., Saha, R., et al., An investigation of commercial iron oxide nanoparticles: Advanced structural and magnetic properties characterization, ACS Omega, 2021, vol. 6, p. 6274. https://doi.org/10.1021/acsomega.0c05845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun, Z.-X., Su, F.-W., Forsling, W., et al., Surface characteristics of magnetite in aqueous suspension, J. Colloid Interface Sci., 1998, vol. 197, no. 1, p. 151. https://doi.org/10.1006/jcis.1997.5239

    Article  CAS  PubMed  Google Scholar 

  16. Salazar-Camacho, C., Villalobos, M., de la Luz Rivas Sanchez, M., et al.,., Characterization and surface reactivity of natural and synthetic magnetites, Chem. Geol., 2013, vol. 347, p. 233. https://doi.org/10.1016/j.chemgeo.2013.03.017

    Article  CAS  Google Scholar 

  17. Vidojkovic, S.M. and Rakin, M.P., Surface properties of magnetite in high temperature aqueous electrolyte solutions: A review, Adv. Colloid Interface Sci., 2017, vol. 245, p. 108. https://doi.org/10.1016/j.cis.2016.08.008

    Article  CAS  PubMed  Google Scholar 

  18. Kosmulski, M., The pH dependent surface charging and points of zero charge. IX. Update, Adv. Colloid Interface Sci., 2021, vol. 296, p. 102519. https://doi.org/10.1016/j.cis.2021.102519

    Article  CAS  PubMed  Google Scholar 

  19. Shilova, O.A., Nikolaev, A.M., Kovalenko, A.S., et al., Synthesis of magnetic nanopowders of iron oxide: Magnetite and maghemite, Russ. J. Inorg. Chem., 2020, vol. 65, p. 426. https://doi.org/10.1134/S0036023620030134

    Article  CAS  Google Scholar 

  20. Shilova, O.A., Panova, G.G., Nikolaev, A.M., et al., Aqueous chemical co-precipitation of iron oxide magnetic nanoparticles for use in agricultural technologies, Letters in Applied NanoBioScience, 2021, vol. 10, no. 2, p. 2215. https://doi.org/10.33263/LIANBS102.22152239

    Article  Google Scholar 

  21. Panova, G.G., Shilova, O.A., Nikolaev, A.M., et al., On the impact of iron oxide nanoparticles on plants in the vegetative period of development, Agrofizika, 2019, no. 3, p. 40. https://doi.org/10.25695/AGRPH.2019.03.07

  22. Liu, S., Wu, G., Chen, H.-Zh., et al., Preparation and characterization of Fe3O4/SiO2 particles for dual-particle electrophoretic display, Synth. Met., 2012, vol. 162, nos. 1–2, p. 89. https://doi.org/10.1016/j.synthmet.2011.11.016

    Article  CAS  Google Scholar 

  23. Nasrazadani, S. and Raman, A., The application of infrared spectroscopy to the study of rust systems—II. Study of cation deficiency in magnetite (Fe3O4) produced during its transformation to maghemite (γ‑Fe2O3) and hematite (α-Fe2O3), Corros. Sci., 1993, vol. 34, no. 8, p. 1355.

    Article  CAS  Google Scholar 

  24. Pecharroman, C., Gonzalez-Carreno, T., and Iglesias, J.E., The infrared dielectric properties of maghemite, γ-Fe2O3, from reflectance measurement on pressed powders, Phys. Chem. Miner., 1995, vol. 22, p. 21. https://doi.org/10.1007/BF00202677

    Article  CAS  Google Scholar 

  25. Anthony, J.W., Bideaux, R.A., and Bladh, K.W., Magnetite. Handbook of Mineralogy, Chantilly, VA: Mineralogical Society of America, 2018.

    Google Scholar 

  26. Koshevaya, E., Nazarovskaia, D., Simakov, M., et al., Surfactant-free tantalum oxide nanoparticles: Synthesis, colloid properties, and application as a contrast agent for computed tomography, J. Mater. Chem., vol. 8, no. 36, p. 8337. https://doi.org/10.1039/D0TB01204A

  27. Drozdov, A.S., Ivanovski, V., Avnir, D., et al., A universal magnetic ferrofluid: Nanomagnetite stable hydrosol with no added dispersants and at neutral pH, J. Colloid Interface Sci., 2016, vol. 468, p. 307. https://doi.org/10.1016/j.jcis.2016.01.061

    Article  CAS  PubMed  Google Scholar 

  28. Pomogailo, A.D., Rozenberg, A.S., and Uflyand, I.E., Nanochastitsy metallov v polimerakh (Metal Nanoparticles in Polymers), Moscow: Khimiya, 2000

  29. Dobychin, D. P., Kadaner, L. I., and Serpinskii, V. V., Fizicheskaya i kolloidnaya khimiya: Uchebnoe posobiye dlya studentov khimicheskikh i biologicheskikh spetsial’nostei pedagogicheskikh institutov (Physical and Colloidal Chemistry: Textbook for Students of Chemical and Biological Specialties of Pedagogical Institutes), Moscow: Prosveshchenie, 1986.

Download references

Funding

The work was carried out within the framework of the research project of the Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences no. 0081–2022–0006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kovalenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalenko, A.S., Shilova, O.A., Nikolaev, A.M. et al. Comparative Characterization of Aqueous Suspensions of Magnetic Iron Oxide Nanoparticles with Different Phase Compositions. Colloid J 85, 389–397 (2023). https://doi.org/10.1134/S1061933X23600239

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X23600239

Navigation