Skip to main content
Log in

Water-Soluble Interpolyelectrolyte Complex Based on Poly(diallyldimethylammonium chloride) and Sodium Polyacrylate as a Component for Creating Stable Biocidal Coatings

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Polycation-based coatings represent a promising class of protective antimicrobial coatings. Water-soluble complexes of poly(diallyldimethylammonium chloride) (PDADMAC) with sodium polyacrylate (PANa) have been studied by turbidimetry. It has been shown that the addition of the polyanion (12 mol %) to the polycation leads to the formation of an interpolyelectrolyte complex (IPEC) stable with respect to phase separation in water-salt media with salt concentrations as high as 0.1–0.2 M. In contrast to the traditional method of obtaining coatings from IPEC by layer-by-layer deposition, we have studied the preparation of the coatings directly from a solution of water-soluble IPEC on a hydrophilic glass surface and a surface of more hydrophobic polycarbonate. It has been found that the formation of IPEC makes it possible to increase the resistance of the coating to wash-off with water compared to the individual PDADMAC coating on both types of substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. Giaouri, E., Heir, E., Desvaux, M., et al., Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens, Front. Microbiol., 2015, vol. 6, p. 841.

    Google Scholar 

  2. Carrascosa, C., Raheem, D., Ramos, F., et al., Microbial biofilms in the food industry-A comprehensive review, Int. J. Environ. Res. Public Health, 2021, vol. 18, no. 4. p. 2014.

  3. Galié, S., García-Gutiérrez, C., Miguélez, E., et al., Biofilms in the food industry: Health aspects and control methods, Front. Microbiol., 2018, vol. 9, p. 898.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ji, W., Koepsel, R.R., Murata, H., et al., Bactericidal specificity and resistance profile of poly(quaternary ammonium) polymers and protein-poly(quaternary ammonium) conjugates, Biomacromolecules, 2017, vol. 18, no. 8, p. 2583.

    Article  CAS  PubMed  Google Scholar 

  5. Zhao, X. and Zhang, Yu., Bacteria-removing and bactericidal efficiencies of PDADMAC composite coagulants in enhanced coagulation treatment, Clean, 2013, vol. 41, p. 37.

    Google Scholar 

  6. Dos Santos, R.L.O., Sarra, G., Lincopan, N., Petri, D.F.S., Aliaga, J., Marques, M.M., Dias, R.B., Coto, N.P., Sugaya, N.N., and Paula, C.R., Preparation, antimicrobial properties, and cytotoxicity of acrylic resins containing poly(diallyldimethylammonium chloride), The International Journal of Prosthodontics, 2021, vol. 34, no. 5, p. 635.

    Article  Google Scholar 

  7. Tran, P.L., Huynh, E., Hamood, A.N., de Souza, A., Schultz, G., Liesenfeld, B., Mehta, D., Webster, D., and Reid, T.W., The ability of quaternary ammonium groups attached to a urethane bandage to inhibit bacterial attachment and biofilm formation in a mouse wound model, International Wound Journal, 2017, vol. 14, no. 1, p. 79.

    Article  PubMed  Google Scholar 

  8. Panova, I., Drobyazko, A., Spiridonov, V., Sybachin, A., Kydralieva, K., Jorobekova, S., and Yaroslavov, A., Humics-based interpolyelectrolyte complexes for antierosion protection of soil: Model investigation, Land Degradation and Development, 2019, vol. 30, p. 337.

    Article  Google Scholar 

  9. Vitorazi, L., Ould-Moussa, N., Sekar, S., Fresnais, J., Loh, W., Chapel, J.-P., and Berret, J.-F., Evidence of a two-step process and pathway dependency in the thermodynamics of poly(diallyldimethylammonium chloride)/poly(sodium acrylate) complexation, Soft Matter, 2014, vol. 10, p. 9496.

    Article  CAS  PubMed  Google Scholar 

  10. Wang, X., Sun, S., Zhu, XingG., Peiying, L., Xinhua, L., Chunlin, L., and Meng, L., Application of amphoteric polymers in the process of leather post-tanning, J. Leather Sci. Eng., 2021, vol. 3, p. 1.

    Article  Google Scholar 

  11. Chen, C., Illergård, J., Wågberg, L., and Ek, M., Effect of cationic polyelectrolytes in contact-active antibacterial layer-by-layer functionalization, Holzforschung, 2017, vol. 71, nos. 7–8, p. 649.

    Article  CAS  Google Scholar 

  12. Yaroslavov, A.A., Efimova, A.A., Sybachin, A.V., et al., Stability of anionic liposome-cationic polymer complexes in water−salt media, Colloid J., 2011, vol. 73, p. 430.

    Article  CAS  Google Scholar 

  13. Kusaia, V.S., Kozhunova, E.Y., Stepanova, D.A., Pigareva, V.A., Sybachin, A.V., Zezin, S.B., Bolshakova, A.V., Shchelkunov, N.M., Vavaev, E.S., Lyubin, E.V., Fedyanin, A.A., and Spiridonov, V.V., Synthesis of magneto-controllable polymer nanocarrier based on poly(n-isopropylacrylamide-co-acrylic acid) for doxorubicin immobilization, Polymers, 2022, vol. 14, no. 24, p. 5440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pigareva, V., Senchikhin, I., Bolshakova, A., and Sybachin, A., Modification of polydiallyldimethylammonium chloride with sodium polystyrenesulfonate dramatically changes the resistance of polymer-based coatings towards wash-off from both hydrophilic and hydrophobic surfaces, Polymers, 2022, vol. 14, no. 6, p. 1247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yan, Y., Chang, S., Wang, T., and Geng, Y., Scratch on polymer materials using AFM tip-based approach: A review, Polymers, 2019, vol. 11, no. 10, p. 1590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Izumrudov, V.A. and Sybachin, A.V., Phase separation in solutions of polyelectrolyte complexes: The decisive effect of a host polyion, Polym. Sci., Ser. A, 2006, vol. 48, no. 10, p. 1098.

    Article  Google Scholar 

  17. Izumrudov, V.A., Paraschuk, V.V., and Sybachin, A.V., Controlled phase separations in solutions of polyelectrolyte complexes—Potential for gene delivery, J. Drug Delivery Sci. Technol., 2006, vol. 16, no. 4, p. 267.

    Article  CAS  Google Scholar 

  18. Queirós, M.V.A. and Loh, W., Preparation of poly(acrylate)/poly(diallyldimethylammonium) coacervates without small counterions and their phase behavior upon salt addition towards poly-ions segregation, Polymers, 2021, vol. 13, no. 14, p. 2259.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pochard, I., Couchot, P., Geffroy, C., Foissy, A., and Persello, J., Counterions contributions in polyelectrolyte adsorption, Rev. Inst. Fr. Pet., 1997, vol. 52, no. 2, p. 251.

    Article  CAS  Google Scholar 

  20. Vleugels, L.F.W., Ricois, S., Voets, I.K., and Tuinier, R., Determination of the “apparent pK a” of selected food hydrocolloids using ortho-toluidine blue, Food Hydrocolloids, 2018, vol. 81, p. 273.

    Article  CAS  Google Scholar 

  21. Anufrieva, E.V., Birshtein, T.M., Nekrasova, T.N., Ptitsyn, O.B., and Sheveleva, T.V., The models of the denaturation of globular proteins. II. Hydrophobic interactions and conformational transition in polymethacrylic acid, J. Polym. Sci., 1967, no. 16, p. 3519.

  22. Yoshida, K. and Dubin, P.L., Complex formation between polyacrylic acid and cationic/nonionic mixed micelles: Effect of pH on electrostatic interaction and hydrogen bonding, Colloids Surf., A, 1999, vol. 147, p. 161.

    Article  CAS  Google Scholar 

  23. Kabanov, V.A., Physical and chemical foundations and prospects for the use of soluble interpolyelectrolyte complexes, Polym. Sci., 1994, vol. 36, no. 2, p. 183.

    CAS  Google Scholar 

  24. Izumrudov, V.A., Parashchuk, V.V., and Sybachin, A.V., Unusual behavior of saline solutions of polyelectrolyte complexes containing guest oligomers, Polym. Sci., Ser. B, 2006, vol. 48, no. 2, p. 78.

    Article  Google Scholar 

  25. Alfei, S. and Schito, A.M., Positively charged polymers as promising devices against multidrug resistant Gram-negative bacteria: A review, Polymers, 2020, vol. 12, no. 5, p. 1195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pan, Y., Xia, Q., and Xiao, H., Cationic polymers with tailored structures for rendering polysaccharide-based materials antimicrobial: An overview, Polymers, 2019, vol. 11, no. 8, p. 1283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Qiu, H., Si, Z., Luo, Y., Feng, P., Wu, X., Hou, W., Zhu, Y., Chan-Park, M.B., Xu, L., and Huang, D., The mechanisms and the applications of antibacterial polymers in surface modification on medical devices, Frontiers in Bioengineering and Biotechnology, 2020, vol. 8, p. 910.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pigareva, V.A., Marina, V.I., and Sybachin, A.V., Biocide coating from polydiallyldimethylammonium chloride. What molecular weight should we choose?, P-hyschem, 2023, vol. 3, p. 147.

    CAS  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Higher Education and Science of the Russian Federation (project no. 075-15-2020-775).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Pigareva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pigareva, V.A., Bol’shakova, A.V., Marina, V.I. et al. Water-Soluble Interpolyelectrolyte Complex Based on Poly(diallyldimethylammonium chloride) and Sodium Polyacrylate as a Component for Creating Stable Biocidal Coatings. Colloid J 85, 433–441 (2023). https://doi.org/10.1134/S1061933X23600100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X23600100

Navigation