Skip to main content

Advertisement

Log in

High genetic heterogeneity of leukodystrophies in Iranian children: the first report of Iranian Leukodystrophy Registry

  • Original Article
  • Published:
neurogenetics Aims and scope Submit manuscript

A Correction to this article was published on 05 September 2023

This article has been updated

Abstract

Leukodystrophies (LDs) are a heterogeneous group of progressive neurological disorders and characterized by primary involvement of white matter of the central nervous system (CNS). This is the first report of the Iranian LD Registry database to describe the clinical, radiological, and genomic data of Persian patients with leukodystrophies. From 2016 to 2019, patients suspicious of LDs were examined followed by a brain magnetic resonance imaging (MRI). A single gene testing or whole-exome sequencing (WES) was used depending on the neuroradiologic phenotypes. In a few cases, the diagnosis was made by metabolic studies. Based on the MRI pattern, diagnosed patients were divided into cohorts A (hypomyelinating LDs) versus cohort B (Other LDs). The most recent LD classification was utilized for classification of diagnosed patients. For novel variants, in silico analyses were performed to verify their pathogenicity. Out of 680 registered patients, 342 completed the diagnostic evaluations. In total, 245 patients met a diagnosis which in turn 24.5% were categorized in cohort A and the remaining in cohort B. Genetic tests revealed causal variants in 228 patients consisting of 213 variants in 110 genes with 78 novel variants. WES and single gene testing identified a causal variant in 65.5% and 34.5% cases, respectively. The total diagnostic rate of WES was 60.7%. Lysosomal disorders (27.3%; GM2-gangliosidosis-9.8%, MLD-6.1%, KD-4.5%), amino and organic acid disorders (17.15%; Canavan disease-4.5%, L-2-HGA-3.6%), mitochondrial leukodystrophies (12.6%), ion and water homeostasis disorders (7.3%; MLC-4.5%), peroxisomal disorders (6.5%; X-ALD-3.6%), and myelin protein disorders (3.6%; PMLD-3.6%) were the most commonly diagnosed disorders. Thirty-seven percent of cases had a pathogenic variant in nine genes (ARSA, HEXA, ASPA, MLC1, GALC, GJC2, ABCD1, L2HGDH, GCDH). This study highlights the most common types as well as the genetic heterogeneity of LDs in Iranian children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The variants identified in the current study have been deposited in the ClinVAR (persistent link: https://www.ncbi.nlm.nih.gov/clinvar/submitters/506651/).

Change history

References

  1. Bonkowsky JL, Nelson C, Kingston J, Filloux F, Mundorff M, Srivastava R (2010) The burden of inherited leukodystrophies in children. Neurology 75:718–725. https://doi.org/10.1212/WNL.0b013e3181eee46b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vanderver A, Hussey H, Schmidt JL, Pastor W, Hoffman HJ (2012) Relative incidence of inherited white matter disorders in childhood to acquired pediatric demyelinating disorders. Semin Pediatr Neurol 19:219–223. https://doi.org/10.1016/j.spen.2012.10.001

    Article  PubMed  PubMed Central  Google Scholar 

  3. Heim P, Claussen M, Hoffmann B, Conzelmann E, Gärtner J, Harzer K et al (1997) Leukodystrophy incidence in Germany. Am J Med Genet 71:475–478. https://doi.org/10.1002/(sici)1096-8628(19970905)71:4%3c475::aid-ajmg20%3e3.0.co;2-c

    Article  CAS  PubMed  Google Scholar 

  4. Ashrafi MR, Rezaei Z, Heidari M, Nikbakht S, Malamiri RA, Mohammadi M et al (2018) The first report of relative incidence of inherited white matter disorders in an Asian country based on an Iranian bioregistry system. J Child Neurol 33:255–259. https://doi.org/10.1177/0883073817751804

    Article  PubMed  Google Scholar 

  5. Vanderver A, Prust M, Tonduti D, Mochel F, Hussey HM, Helman G et al (2015) Case definition and classification of leukodystrophies and leukoencephalopathies. Mol Genet Metab 114:494–500. https://doi.org/10.1016/j.ymgme.2015.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Moser H (1995) Adrenoleukodystrophy: natural history, treatment and outcome. J Inherit Metab Dis 18:435–447. https://doi.org/10.1007/BF00710055

    Article  CAS  PubMed  Google Scholar 

  7. van der Knaap MS, Bugiani M (2017) Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms. Acta Neuropathol 134:351–382. https://doi.org/10.1007/s00401-017-1739-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bugiani M, van der Knaap MS (2017) Childhood white matter disorders: much more than just diseases of myelin. Acta Neuropathol 134:329–330

    Article  PubMed  Google Scholar 

  9. Ashrafi MR, Amanat M, Garshasbi M, Kameli R, Nilipour Y, Heidari M et al (2020) An update on clinical, pathological, diagnostic, and therapeutic perspectives of childhood leukodystrophies. Expert Rev Neurother 20:65–84. https://doi.org/10.1080/14737175.2020.1699060

    Article  CAS  PubMed  Google Scholar 

  10. Parikh S, Bernard G, Leventer RJ, van der Knaap MS, van Hove J, Pizzino A et al (2015) A clinical approach to the diagnosis of patients with leukodystrophies and genetic leukoencephelopathies. Mol Genet Metab 114:501–515. https://doi.org/10.1016/j.ymgme.2014.12.434

    Article  CAS  PubMed  Google Scholar 

  11. Kevelam SH, Steenweg ME, Srivastava S, Helman G, Naidu S, Schiffmann R et al (2016) Update on leukodystrophies: a historical perspective and adapted definition. Neuropediatrics 47:349–354. https://doi.org/10.1055/s-0036-1588020

    Article  PubMed  Google Scholar 

  12. van der Knaap MS, Schiffmann R, Mochel F, Wolf NI (2019) Diagnosis, prognosis, and treatment of leukodystrophies. The Lancet Neurology. https://doi.org/10.1016/S1474-4422(19)30143-7

    Article  PubMed  Google Scholar 

  13. Mahdieh N, Soveizi M, Tavasoli AR, Rabbani A, Ashrafi MR, Kohlschütter A et al (2021) Genetic testing of leukodystrophies unraveling extensive heterogeneity in a large cohort and report of five common diseases and 38 novel variants. Sci Rep 11:1–10

    Article  Google Scholar 

  14. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159. https://doi.org/10.1006/abio.1987.9999

    Article  CAS  PubMed  Google Scholar 

  15. Fattahi Z, Beheshtian M, Mohseni M, Poustchi H, Sellars E, Nezhadi SH et al (2019) Iranome: a catalog of genomic variations in the Iranian population. Hum Mutat 40:1968–1984. https://doi.org/10.1002/humu.23880

    Article  CAS  PubMed  Google Scholar 

  16. Ferrer-Costa C, Gelpí JL, Zamakola L, Parraga I, De La Cruz X, Orozco M (2005) PMUT: a web-based tool for the annotation of pathological mutations on proteins. Bioinformatics 21:3176–3178

    Article  CAS  PubMed  Google Scholar 

  17. Choi Y, Chan AP (2015) PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31:2745–2747. https://doi.org/10.1093/bioinformatics/btv195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Adzhubei I, Jordan DM, Sunyaev SR (2013) Predicting functional effect of human missense mutations using PolyPhen‐2. Current protocols in human genetics 76:7.20. 21–27.20. 41. https://doi.org/10.1002/0471142905.hg0720s76

  19. Schwarz JM, Rödelsperger C, Schuelke M, Seelow D (2010) MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods 7:575–576. https://doi.org/10.1038/nmeth0810-575

    Article  CAS  PubMed  Google Scholar 

  20. Garshasbi M, Mahmoudi M, Razmara E, Vojdanian M, Aslani S, Farhadi E et al (2020) Identification of RELN variant p. (Ser2486Gly) in an Iranian family with ankylosing spondylitis; the first association of RELN and AS. Eur J Hum Genet 28:754–762. https://doi.org/10.1038/s41431-020-0573-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Plagnol V, Plagnol MV (2016) Package “ExomeDepth.”

  22. Roller E, Ivakhno S, Lee S, Royce T, Tanner S (2016) Canvas: versatile and scalable detection of copy number variants. Bioinformatics 32:2375–2377

    Article  CAS  PubMed  Google Scholar 

  23. Joshi-Tope G, Gillespie M, Vastrik I, D’Eustachio P, Schmidt E, de Bono B et al (2005) Reactome: a knowledgebase of biological pathways. Nucleic Acids Res 33:D428–D432. https://doi.org/10.1093/nar/gki072

    Article  CAS  PubMed  Google Scholar 

  24. Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S et al (2016) ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res 44:D862–D868. https://doi.org/10.1093/nar/gkv1222

    Article  CAS  PubMed  Google Scholar 

  25. Wong AK, Krishnan A, Troyanskaya OG (2018) GIANT 2.0: genome-scale integrated analysis of gene networks in tissues. Nucleic Acids Res 46:W65–W70. https://doi.org/10.1093/nar/gky408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stellitano LA, Winstone AM, Van der Knaap MS, Verity CM (2016) Leukodystrophies and genetic leukoencephalopathies in childhood: a national epidemiological study. Dev Med Child Neurol 58:680–689

    Article  PubMed  Google Scholar 

  27. Knuutinen OA, Oikarainen JH, Suo-Palosaari MH, Kangas SM, Rahikkala EJ, Pokka TML et al (2021) Epidemiological, clinical, and genetic characteristics of paediatric genetic white matter disorders in Northern Finland. Dev Med Child Neurol 63:1066–1074

    Article  PubMed  Google Scholar 

  28. Cohen L, Manín A, Medina N, Rodríguez-Quiroga S, González-Morón D, Rosales J et al (2020) Argentinian clinical genomics in a leukodystrophies and genetic leukoencephalopathies cohort: diagnostic yield in our first 9 years. Ann Hum Genet 84:11–28

    Article  PubMed  Google Scholar 

  29. Alfadhel M, Almuqbil M, Al Mutairi F, Umair M, Almannai M, Alghamdi M, et al. (2021) The leukodystrophy spectrum in Saudi Arabia: epidemiological, clinical, radiological, and genetic data. Frontiers in Pediatrics:315

  30. Inaba M, White L, Bell C, Chen R, Petrovitch H, Launer L et al (2011) White matter lesions on brain magnetic resonance imaging scan and 5-year cognitive decline: the Honolulu-Asia aging study. J Am Geriatr Soc 59:1484–1489. https://doi.org/10.1111/j.1532-5415.2011.03490.x

    Article  PubMed  PubMed Central  Google Scholar 

  31. Vanderver A, Tonduti D, Schiffmann R, Schmidt J, van der Knaap MS (2014) Leukodystrophy overview.

  32. Osterman B, La Piana R, Bernard G (2012) Advances in the diagnosis of leukodystrophies. Future Neurol 7:595–612. https://doi.org/10.2217/fnl.12.52

    Article  CAS  Google Scholar 

  33. Köhler W, Curiel J, Vanderver A (2018) Adulthood leukodystrophies. Nat Rev Neurol 14:94–105

    Article  PubMed  Google Scholar 

  34. Shukla A, Kaur P, Narayanan DL, do Rosario MC, Kadavigere R, Girisha KM, (2021) Genetic disorders with central nervous system white matter abnormalities: an update. Clin Genet 99:119–132. https://doi.org/10.1111/cge.13863

    Article  CAS  PubMed  Google Scholar 

  35. Retterer K, Juusola J, Cho MT, Vitazka P, Millan F, Gibellini F et al (2016) Clinical application of whole-exome sequencing across clinical indications. Genet Med 18:696–704. https://doi.org/10.1038/gim.2015.148

    Article  CAS  PubMed  Google Scholar 

  36. Vanderver A, Simons C, Helman G, Crawford J, Wolf NI, Bernard G et al (2016) Whole exome sequencing in patients with white matter abnormalities. Ann Neurol 79:1031–1037. https://doi.org/10.1002/ana.24650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mokhtari R, Bagga A (2003) Consanguinity, genetic disorders and malformations in the Iranian population. Acta Biologica Szegediensis 47:47–50

    Google Scholar 

  38. Vanderver A, Bernard G, Helman G, Sherbini O, Boeck R, Cohn J et al (2020) Randomized clinical trial of first-line genome sequencing in pediatric white matter disorders. Ann Neurol. https://doi.org/10.1002/ana.25757

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lin S-T, Heng MY, Ptáček LJ, Fu Y-H (2014) Regulation of myelination in the central nervous system by nuclear lamin B1 and non-coding RNAs. Translational neurodegeneration 3:4. https://doi.org/10.1186/2047-9158-3-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We appreciate the patients and their families for their willingness to participate in this research. We also express our gratitude to Drs. Marjo van der Knaap, pediatric neurologist and leukodystrophy specialist at the Emma Children’s Hospital, University Medical Center in Amsterdam, the Netherlands, and Ali Fatemi, Pediatric Neurologist and leukodystrophy expert at the Moser Center for Leukodystrophies, Kennedy Krieger Institute, and Department of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, USA, for their continued support and encouragement.

Funding

Research reported in this publication was supported and funded by the Tehran University of Medical Sciences (grant no.: 96–02-30–35551) and by the National Institute for Medical Research Development (electronic application no.: 983886).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Ali Reza Tavasoli and Mahmoudreza Ashrafi. Data curation: Ali Reza Tavasoli, Reyhaneh kameli, Sareh Hosseinpour, Ehsan Razmara, Zahra Rezaei, Raziyeh Mashayekhi, Mohammad Barzegar, Reza Azizimalamiri, Morteza Rezvani Kashani, Nahideh Khosroshahi, Maryam Rasulinezhad, Morteza Heidari, Man Amanat, Alireza Abdi, Bahram Mohammadi, Mahmoud Mohammadi, Gholam Reza Zamani, Reza Shervin Badv, Abdolmajid Omrani, Sedigheh Nikbakht, Ali Hosseini Bereshneh, Mojtaba Movahedinia, Hossein Farshad Moghadam, Hossein Shojaaldini Ardakani, Masood Ghahvechi Akbari, Mehran Beiraghi Tousi, Mohammad Vafaee Shahi, Firouzeh Hosseini, Masoud Hassanvand Amouzadeh, Seyed Ahmad Hosseini, Ali Nikkhah, Ali Khajeh, Bahram Yarali, Mohammad Rohani, Parviz Karimi, Hadi Montazer Lotf Elahi, Seyyed Mohamad Mahdi Hosseiny, Masoumeh Sadat Sadeghzadeh, Hossein Mohebbi, Maryam Hosseini Moghadam, Mahdieh Soveizi, Bahareh Rabbani, and Ali Rabbani. Formal analysis: Zahra Zamani, Nejat Mahdieh, and Hajar Aryan. Investigation: Neda Pak, Hooman Alizadeh, Nejat Mahdieh, Masoud Garshasbi, and Hassan Vahidnezhad. Methodology: Zahra Zamani and Ali Reza Tavasoli. Project administration: Ali Reza Tavasoli. Resources: Reyhaneh Kameli, Sareh Hosseinpour, Ehsan Razmara, and Ali Reza Tavasoli. Supervision: Mahmoudreza Ashrafi, Ali Reza Tavasoli, and Masoud Garshasbi. Software: Ehsan Razmara. Visualization: Reyhaneh Kameli, Sareh Hosseinpour. Writing—original draft: Reyhaneh kameli, Ali Hosseini Bereshneh, Ehsan Razmara, and Sareh Hosseinpour. Writing—review and editing: Ali Reza Tavasoli and Masoud Garshasbi.

Corresponding authors

Correspondence to Masoud Garshasbi or Ali Reza Tavasoli.

Ethics declarations

Ethics approval and consent to participate

The study protocol was approved by the ethical committee of Children’s Medical Center, Tehran, Iran (IR.TUMS.MEDICINE.REC.1396.3082) and the National Institute for Medical Research Development (IR.NIMAD.REC.1399.066). According to local national ethical requirements and in line with the Declaration of Helsinki, each patient or their legal guardians signed informed consent at the participating centers. Sampling was only done if the consent did not exclude data sharing.

Consent for publication

Written informed consent was obtained from the patient for publication of this study and any accompanying images.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Mahmoudreza Ashrafi and Reyhaneh Kameli should be considered joint first authors.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashrafi, M., Kameli, R., Hosseinpour, S. et al. High genetic heterogeneity of leukodystrophies in Iranian children: the first report of Iranian Leukodystrophy Registry. Neurogenetics 24, 279–289 (2023). https://doi.org/10.1007/s10048-023-00730-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-023-00730-y

Keywords

Navigation