Skip to main content
Log in

Role of the Pulse Current Duty Cycle during Titanium Tension

  • RELIABILITY, STRENGTH, AND WEAR RESISTANCE OF MACHINES AND STRUCTURES
  • Published:
Journal of Machinery Manufacture and Reliability Aims and scope Submit manuscript

Abstract

The effect of a pulsed current on titanium tensile deformation obtained by postdeformation annealing after cold rolling of the coarse-grained and ultrafine-grained states has been considered. The effect of the duty cycle of the pulse current over a wide range on the shape of the stress–strain curves and mechanical properties has been studied. It is shown that an increase in the duty cycle results in an enhancement in the thermal effect of the current and a decrease in the flow stresses, strength, and plasticity, as well as in intense necking. A decrease in the duty cycle leads to the absence of heating and the occurrence of the electroplastic effect and an increase in the strength and plasticity, which depends on the structural state of coarse-grained titanium and the method of titanium production. The possible physical mechanisms of hardening associated with twinning, strain aging, and low-cycle fatigue have been considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Troitskii, O.A., Baranov, Yu.V., Avraamov, Yu.S., and Shlyapin, A.D., Fizicheskie osnovy i tekhnologii obrabotki sovremennykh materialov (teoriya, tekhnologiya, struktura i svoistva) (Physical Foundations and Technologies for Processing Modern Materials: Theory, Technology, Structure, and Properties), Moscow: Institut Komp’yuternykh Tekhnologii, 2004, vol. 1.

  2. Conrad, H., Effects of electric current on solid state phase transformations in metals, Mater. Sci. Eng., A, 2000, vol. 287, no. 2, pp. 227–237. https://doi.org/10.1016/S0921-5093(00)00780-2

    Article  Google Scholar 

  3. Troitskii, O.A., Electromechanical effect in metals, Zh. Eksp. Teor. Fiz. Pisma Redaktisiyu, 1969, no. 1, p. 18.

  4. Varma, S.K. and Cornwell, L.R., The electroplastic effect in aluminum, Scr. Metall., 1979, vol. 13, no. 8, pp. 733–738. https://doi.org/10.1016/0036-9748(79)90146-7

    Article  Google Scholar 

  5. Roh, J., Seo, J.-J., Hong, S.-T., Kim, M.-J., Han, H.N., and Roth, J.T., The mechanical behavior of 5052-H32 aluminum alloys under a pulsed electric current, Int. J. Plast., 2014, vol. 58, pp. 84–99. https://doi.org/10.1016/j.ijplas.2014.02.002

    Article  Google Scholar 

  6. Xu, X., Zhao, Y., Ma, B., and Zhang, M., Rapid precipitation of T-phase in the 2024 aluminum alloy via cyclic electropulsing treatment, J. Alloys Compd., 2014, vol. 610, pp. 506–510. https://doi.org/10.1016/j.jallcom.2014.05.063

    Article  Google Scholar 

  7. Wu, W., Wang, Y., Wang, J., and Wei, S., Effect of electrical pulse on the precipitates and material strength of 2024 aluminum alloy, Mater. Sci. Eng., A, 2014, vol. 608, pp. 190–198. https://doi.org/10.1016/j.msea.2014.04.071

    Article  Google Scholar 

  8. Li, X., Tang, G., Kuang, J., Li, X., and Zhu, J., Effect of current frequency on the mechanical properties, microstructure and texture evolution in AZ31 magnesium alloy strips during electroplastic rolling, Mater. Sci. Eng., A, 2014, vol. 612, pp. 406–413. https://doi.org/10.1016/j.msea.2014.06.075

    Article  Google Scholar 

  9. Sánchez Egea, A.J., González Rojas, H.A., Celentano, D.J., Travieso-Rodríguez, J.A., and Llumà i Fuentes, J., Electroplasticity-assisted bottom bending process, J. Mater. Process. Technol., 2014, vol. 214, no. 11, pp. 2261–2267. https://doi.org/10.1016/j.jmatprotec.2014.04.031

    Article  Google Scholar 

  10. Guo, D., Deng, W., Song, P., Lv, X., Shi, Y., Qu, Z., and Zhang, G., Effect of strain rate on microstructure and mechanical properties of electroplastic rolled ZrTi alloys, Adv. Eng. Mater., 2022, vol. 24, no. 7, p. 2101366. https://doi.org/10.1002/adem.202101366

    Article  Google Scholar 

  11. Sheng, Yi., Hua, Yo., Wang, X., Zhao, X., Chen, L., Zhou, H., Wang, J., Berndt, C.C., and Li, W., Application of high-density electropulsing to improve the performance of metallic materials:mechanisms, Materials, 2018, vol. 11, no. 2, p. 185. https://doi.org/10.3390/ma11020185

    Article  Google Scholar 

  12. Kim, M.-J., Lee, M.-G., Hariharan, K., Hong, S.-T., Choi, I.-S., Kim, D., Oh, K.H., and Han, H.N., Electric current-assisted deformation behavior of Al–Mg–Si alloy under uniaxial tension, Int. J. Plast., 2017, vol. 94, pp. 148–170. https://doi.org/10.1016/j.ijplas.2016.09.010

    Article  Google Scholar 

  13. Indhiarto, I., Shimizu, T., Furushima, T., and Yang, M., Effect of DC pulsed-current on deformation behavior of magnesium alloy thin sheets, Procedia Manuf., 2018, vol. 15, pp. 1663–1670. https://doi.org/10.1016/j.promfg.2018.07.270

    Article  Google Scholar 

  14. Stolyarov, V., Korolkov, O., Pesin, A., and Raab, G., Deformation behavior under tension with pulse current of ultrafine-grain and coarse-grain CP titanium, Materials, 2023, vol. 16, no. 1, p. 191. https://doi.org/10.3390/ma16010191

    Article  Google Scholar 

  15. Rudolf, C., Goswami, R., Kang, W., and Thomas, J., Effects of electric current on the plastic deformation behavior of pure copper, iron, and titanium, Acta Mater., 2021, vol. 209, no. 1, p. 116776. https://doi.org/10.1016/j.actamat.2021.116776

    Article  Google Scholar 

  16. Stolyarov, V.V., Zhu, Y.T., Alexandrov, I.V., Lowe, T.C., and Valiev, R.Z., Influence of ECAP routes on the microstructure and properties of pure Ti, Mater. Sci. Eng., A, 2001, vol. 299, nos. 1–2, pp. 59–67. https://doi.org/10.1016/S0921-5093(00)01411-8

    Article  Google Scholar 

  17. Rudolf, C., Goswami, R., Kang, W., and Thomas, J., Effects of electric current on the plastic deformation behavior of pure copper, iron, and titanium, Acta Mater., 2021, vol. 209, p. 116776. https://doi.org/10.1016/j.actamat.2021.116776

    Article  Google Scholar 

  18. Demler, E., Gershtein, G., Dalinger, A., Nürnberger, F., Epishin, A., and Molodov, D.A., Effect of electrical pulses on the mechanical behavior of single crystals of nickel-based CMSX-4 superalloy and the mobility of low-angle grain boundary in aluminum bicrystals, Bull. Russ. Acad. Sci.: Phys., 2018, vol. 82, no. 9, pp. 1079–1085. https://doi.org/10.3103/S106287381809006X

    Article  Google Scholar 

  19. Savenko, V.S., Troitskii, O.A., and Gunenko, A.V., Physical aspects of electroplastic deformation of metals, Vestn. Brestskogo Univ. Fiz. Mat., 2018, vol. 4, no. 1, pp. 40–47.

    Google Scholar 

  20. Zhao, Sh., Zhang, R., Chong, Ya., Li, X., Abu-Odeh, A., Rothchild, E., Chrzan, D.C., Asta, M., Morris, Jr., J.W., and Minor, A.M., Defect reconfiguration in a Ti-Al alloy via electroplasticity, Nat. Mater., 2021, vol. 20, pp. 468–472. https://doi.org/10.1038/s41563-020-00817-z

    Article  Google Scholar 

  21. Pakhomov, M.A. and Stolyarov, V.V., Specific features of electroplastic effect in mono-and polycrystalline aluminum, Met. Sci. Heat Treat., 2021, vol. 63, pp. 236–242. https://doi.org/10.1007/s11041-021-00677-7

    Article  Google Scholar 

  22. Lee, H.P., Esling, C., and Bunge, H.J., Development of the rolling texture in titanium, Textures Microstruct., 1988, vol. 7, p. 562818. https://doi.org/10.1155/TSM.7.317

    Article  Google Scholar 

  23. Zherebtsov, S.V., Dyakonov, G.S., Salem, A.A., Malysheva, S.P., Salishchev, G.A., and Semiatin, S.L., Evolution of grain and subgrain structure during cold rolling of commercial-purity titanium, Mater. Sci. Eng., A, 2011, vol. 528, no. 9, pp. 3474–3479. https://doi.org/10.1016/j.msea.2011.01.039

    Article  Google Scholar 

  24. Stolyarov, V.V., Zeipper, L., Mingler, B., and Zehetbauer, M., Influence of postdeformation on CP-Ti processed by equal channel angular pressing, Mater. Sci. Eng., A, 2008, vol. 476, nos. 1–2, pp. 98–105. https://doi.org/10.1016/j.msea.2007.04.069

    Article  Google Scholar 

  25. Lee, T., Magargee, J., Ng, M.K., and Cao, J., Constitutive analysis of electricallyassisted tensile deformation of CP-Ti based on non-uniform thermal expansion, plastic softening and dynamic strain aging, Int. J. Plast., 2017, vol. 94, pp. 44–56. https://doi.org/10.1016/j.ijplas.2017.02.012

    Article  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation under agreement no. 075-15-2021-709, project no. RF-2296 61321X0037 (control measurements).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Stolyarov.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stolyarov, V.V. Role of the Pulse Current Duty Cycle during Titanium Tension. J. Mach. Manuf. Reliab. 52, 313–319 (2023). https://doi.org/10.3103/S1052618823040167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1052618823040167

Keywords:

Navigation