Skip to main content
Log in

Modulated laser-induced acceleration of a relativistic charged particle

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The acceleration of charged particles over short distances by a modulated laser pulse has promising applications in the development of advanced technology in fields such as material diagnostics and medicine. Herein, a mechanism is proposed to accelerate charged particles using multifrequency modulated circularly polarized laser pulses directed along the propagation direction of a constant uniform magnetic field. An exact analytical solution is obtained for the equation of motion of a relativistic charged particle in a modulated multifrequency electromagnetic field, and its phase-matching condition is observed. Upon investigation of several cases of initial conditions for the motion of a charged particle, oscillatory motion is revealed in the field of a modulated electromagnetic wave, which depends on the parameters of the modulated electromagnetic wave, as well as the translational motion of the particle. The condition for cyclotron auto-resonance in the field of an intense laser pulse is evaluated. Results indicate that the cyclotron auto-resonance is satisfied for nonrelativistic intensities of the laser field. Finally, the average kinetic energy in the field of a plane laser pulse and that in the field of a one-dimensional Gaussian beam are compared, showing that the former does not differ from the latter for any range of laser field intensities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. T Tajima and J M Dawson Phys. Rev. Lett. 43 267 (1979)

    CAS  Google Scholar 

  2. D Strickland and G Mourou Opt. Commun. 56 219 (1989)

    Google Scholar 

  3. P Maine and G Mourou Opt. Lett. 13 467 (1988)

    CAS  PubMed  Google Scholar 

  4. S-W Bahk et al. Opt. Lett. 29 2837 (2004)

    CAS  PubMed  Google Scholar 

  5. V Yanovsky et al. Opt. Express 16 2109 (2008)

    CAS  PubMed  Google Scholar 

  6. G A Mourou, T Tajima and S V Bulanov Rev. Mod. Phys. 78 309 (2006)

    CAS  Google Scholar 

  7. P A Norreys, F N Beg, Y Sentoku, L O Silva, R A Smith and R M Trines Phys. Plasmas 16 041002 (2009)

    Google Scholar 

  8. D J Umstadter Phys. Appl. Phys. 36 R151 (2003)

    CAS  Google Scholar 

  9. A Pukhov Rep. Prog. Phys. 66 47 (2002)

    Google Scholar 

  10. A V Korzhimanov,A A Gonoskov, E A Khazanov and A M Sergeev Phys.-Usp. 54 9 (2011)

    Google Scholar 

  11. R H Lehmberg and S P Obenschain Opt. Commun. 46 27 (1983)

    CAS  Google Scholar 

  12. W Yu, V Bychenkov, Y Sentoku, M Y Yu, Z M Sheng and K Mima Phys. Rev. Lett. 85 570 (2000)

    CAS  Google Scholar 

  13. A Pukhov, Z-M Sheng and J Meyer-ter-Vehn Phys. Plasmas 6 2847 (1999)

    CAS  Google Scholar 

  14. P X Wang, Y K Ho, X Q Yuan, Q Kong, N Cao, A M Sessler, Appl. Phys. Lett. 78 2253 (2001)

    CAS  Google Scholar 

  15. Z-M Sheng, K Mima, Y Sentoku, Y. and M S Jovanović, T Taguchi, J Zhang, et al. Phys. Rev. Lett. 88 055004 (2002)

    PubMed  Google Scholar 

  16. A Pukhov and J Meyer-ter-Vehn Appl. Phys. B 74 355 (2002)

    CAS  Google Scholar 

  17. M Y Yu, W Yu, Z Y Chen, J Zhang, Y Yin, L H Cao, et al. Phys. Plasmas 10 2468 (2003)

    CAS  Google Scholar 

  18. W P Leemans, B Nagler, A J Gonsalves, C Toth, K Nakamura, C G R Geddes, et al. Nat. Phys. 2 696 (2006)

    CAS  Google Scholar 

  19. M Tabak, J Hammer, M E Glinsky, W L Kruer, S C Wilks, J Woodworth, et al. Phys. Plasmas 1 1626 (1994)

    CAS  Google Scholar 

  20. P A Norreys, M Santala, E Clark, M Zepf, I Watts, F N Beg, et al. Phys. Plasmas 6 2150 (1999)

    CAS  Google Scholar 

  21. Y C Huang, D Zheng, W M Tulloch and R L Byer Appl. Phys. Lett. 68 753 (1996)

    CAS  Google Scholar 

  22. W K H Panofsky and M Breidenbach Rev. Mod. Phys. 71 S121 (1999)

    CAS  Google Scholar 

  23. S M Hooker Nat. Photon. 7 775 (2013)

    CAS  Google Scholar 

  24. G Mourou, B Brocklesby, T Tajima and J Limpert Nat. Photon. 7 258 (2013)

    CAS  Google Scholar 

  25. E A Peralta, K Soong, R J England, E R Colby, Z Wu and B Montazeri, et al. Nature 503 91 (2013)

    CAS  PubMed  Google Scholar 

  26. J Breuer and P Hommelhoff Phys. Rev. Lett. 111 134803 (2013)

    PubMed  Google Scholar 

  27. T Plettner, R L Byer, E Colby, B Cowan, C M S Sears, J E Spencer, et al. Phys. Rev. Lett. 95 134801 (2005)

    CAS  PubMed  Google Scholar 

  28. R B Palmer AIP Conference Proceedings 335 90 (1995)

    Google Scholar 

  29. E Esarey, C B Schroeder and W P Leemans Rev. Mod. Phys. 81 1229 (2009)

    CAS  Google Scholar 

  30. S Phillip, E Eric, K Jonathan and T Antonio Opt. Commun. 124 69 (1996)

    Google Scholar 

  31. M Vincent, V Charles and P Michel Opt. Lett. 38 821 (2013)

    Google Scholar 

  32. B Quesnel and P Mora Phys. Rev. E 58 3719 (1998)

    CAS  Google Scholar 

  33. J X Wang, Y K Ho, Q Kong, L J Zhu, L Feng and S Scheid, et al. Phys. Rev. E 58 6575 (1998)

    CAS  Google Scholar 

  34. J X Wang, Y K Ho, L Feng, Q Kong, P X Wang and Z S Yuan, et al. Phys. Rev. E 60 7473 (1999)

    CAS  Google Scholar 

  35. H Liu, X T He and S G Chen Phys. Rev. E 69 066409 (2004)

    Google Scholar 

  36. Y I Salamin Phys. Rev. A 73 043402 (2006)

    Google Scholar 

  37. F Sohbatzadeh, S Mirzanejhad and M Ghasemi Phys. Plasmas 13 123108 (2006)

    Google Scholar 

  38. K P Singh Phys. Plasmas 11 1164 (2004)

    CAS  Google Scholar 

  39. B-S Xie, M-P Liu, N-Y Wang and M Y Yu Appl. Phys. Lett. 91 011118 (2007)

    Google Scholar 

  40. F C Chen, X T He, Z M Sheng, H Zhang and M Y Yu Phys. Scr. 75 340 (2007)

    CAS  Google Scholar 

  41. L Dai, J-X Li, W-P Zang and J-G Tian Opt. Express 19 9303 (2011)

    CAS  Google Scholar 

  42. S C Wilks, W L Kruer, M Tabak and A B Langdon Phys. Rev. Lett. 69 1383 (1992)

    CAS  Google Scholar 

  43. S C Wilks, A B Langdon, T E Cowan, M Roth, M Singh and S Hatchett, et al. Phys. Plasmas 8 542 (2001)

    CAS  Google Scholar 

  44. Y Sentoku, T E Cowan, A Kemp and H Ruhl Phys. Plasmas 10 2009 (2003)

    CAS  Google Scholar 

  45. E d’Humieres and E Lefebvre, L Gremillet and V Malka Phys. Plasmas 12 062704 (2005)

    Google Scholar 

  46. P Mora Phys. Rev. E 72 056401 (2005)

    CAS  Google Scholar 

  47. Y Oishi, T Nayuki, T Fujii, Y Takizawa, X Wang and T Yamazaki, et al. Phys. Plasmas 12 073102 (2005)

    Google Scholar 

  48. V G Bagrov and V A Bordovitsyn Mat. Mat. Fiz. 8 691 (1968)

    Google Scholar 

  49. V G Bagrov, D M Gitman and P M Lavrov Soviet Phys. J. 17 806 (1974)

    Google Scholar 

  50. S N Andreev, V P Makarov and A A Rukhadze Quant. Electron. 39 68 (2009)

    CAS  Google Scholar 

  51. A A Sokolov and I M Ternov Relativistic Electron (Moscow: Nauka) p 312 (1974)

  52. K R Chu Rev. Mod. Phys. 76 489 (2004)

    CAS  Google Scholar 

  53. C S Roberts and S J Buchsbaum Phys. Rev. 135 A381 (1964)

    Google Scholar 

  54. H R Jory and A W Trivelpiece J. Appl. Phys. 39 3053 (1968)

    Google Scholar 

  55. A Bourdier and S Gond Phys. Rev. E 62 4189 (2000)

    MathSciNet  CAS  Google Scholar 

  56. A Bourdier and S Gond Phys. Rev. E 63 036609 (2001)

    CAS  Google Scholar 

  57. V G Bagrov and V R Khalilov Soviet Phys. J. 11 22 (1968)

    Google Scholar 

  58. V G Bagrov, D M Gitman, I M Ternov, V R Khalilov and V N Shapovalov Exact Solution of Relativistic Wave Equations (Novosibirsk: Nauka) p 334 (1982)

  59. V G Bagrov, G S Bisnovatyi-Kogan, V A Bordovitsyn, A V Borisov, O F Dorofeev, V C Zhukovskii, et al. Theory of Emission by Relativistic Particles (Moscow: Fizmatlit) p 576 (2002)

  60. I M Ternov, A M Khapaev and B A Volodin Moscow Univ. Phys. Bull. 4 70 (1980)

    Google Scholar 

  61. B A Volodin, I V Ponomarev and A M Khapaev Soviet Phys. J. 27 113 (1984)

    Google Scholar 

  62. G F Kopytov and V B Tlyachev Izv. Vyssh. Uchebn. Zaved. Fiz. [Dep. in VINITI] 6526-84 11 (1984)

    Google Scholar 

  63. B-L Qian Phys. Plasmas 7 537 (2000)

    Google Scholar 

  64. L-B Kong and P-K Liu Phys. Plasmas 14 063101 (2007)

    Google Scholar 

  65. L-B Kong, Z and Li, C-R Xie and Z-L Hou Commun. Nonlinear Sci. Numer. Simul. 17 1104 (2012)

    Google Scholar 

  66. L Feng and Y-K Ho Phys. Rev. E 47 R2277 (1993)

    CAS  Google Scholar 

  67. L Feng and Y-K Ho Phys. Rev. E 49 740 (1994)

    CAS  Google Scholar 

  68. S Kawata, A Manabe, H Watanabe and K Mizuno Part. Accel. 32 229 (1990)

    CAS  Google Scholar 

  69. K P Singh Phys. Plasmas 11 1164 (2004)

    CAS  Google Scholar 

  70. J D Lawson IEEE Transactions on Nuclear Science NS 26 4217 (1979)

    Google Scholar 

  71. P M Woodward J.I.E.E. 93 1554 (1946)

    Google Scholar 

  72. R B Palmer Part. Accel. 11 81 (1980)

    CAS  Google Scholar 

  73. A A Kolomenskii and A N Lebedev Dokl. Akad. Nauk SSSR 145 1259 (1962)

    CAS  Google Scholar 

  74. V Y Davydovskii ZhETF 43 886 (1962)

    CAS  Google Scholar 

  75. V P Milant’ev Phys.-Usp. 56 823 (2013)

    Google Scholar 

  76. V A Buts and A G Zagorodny Phys. Plasmas 28 022311 (2021)

    CAS  Google Scholar 

  77. Y Goto, S Kubo and T I Tsujimura New J. Phys. 23 063021 (2021)

    Google Scholar 

  78. G F Kopytov, V B Tlyachev and S S Oksuzyan Izv. Vyssh. Uchebn. Zaved. Fiz. 28 110 (1986)

    Google Scholar 

  79. N S Akintsov and A P Nevecheria AIP Advances 12 035212 (2022)

    Google Scholar 

  80. G F Kopytov, S S Oksuzyan and V B Tlyachev Izv. Vyssh. Uchebn. Zaved. Fiz. [Dep. in VINITI] 7353-87 (1985)

  81. G F Kopitov, A A Martynov and N S Akintsov Ekolog. Vestn. Nauchn. Tsentr. Chernomorsk. Ekonomich. Sotrudn. 2 39 (2014)

    Google Scholar 

  82. N S Akintsov, V A Isaev, G F Kopytov and A A Martynov Phys. and Math. 1 454 (2015)

    Google Scholar 

  83. G F Kopytov, A A Martynov and N S Akintsov Phys., Chem., Math. 6 661 (2015)

    Google Scholar 

  84. Z-M Sheng, L-W Zhu, M Y Yu and Z-M Zhang New J. Phys. 12 013011 (2010)

    Google Scholar 

  85. L-W Zhu, Z-M Sheng and M Y Yu Phys. Plasmas 20 113112 (2013)

    Google Scholar 

  86. A Holkundkar, G Brodin and M Marklund Phys. Rev. ST Accel. Beams 15 091301 (2012)

    Google Scholar 

  87. G F Kopytov, A A Martynov and N S Akintsov Russ. Phys J. 58 508 (2015)

    Google Scholar 

  88. R M A Azzam, N M Bashara and D Thorburn Burns Analytica Chimica Acta 199 283 (1987)

    Google Scholar 

  89. M Gehrtz, G C Bjorklund and E A Whittaker J. Opt. Soc. Am. B 2 1510 (1982)

    Google Scholar 

  90. L D Landau and E M Lifshitz The Classical Theory of Fields (Amsterdam: Pergamon) p 402 (1975)

  91. A Cuyt, V B Petersen, B Verdonk, H Waadeland and W B Jones Handbook of continued fractions for special functions (Dordrecht: Springer Science) p 431 (2008)

  92. A L Galkin, V V Korobkin, M Y Romanovskii and O B Shiryaev Quant. Electron. 37 903 (2007)

    CAS  Google Scholar 

  93. S N Andreev, D N Gabyshev, Y I Eremeicheva, V P Makarov, A A Rukhadze and V P Tarakanov Laser Phys. 25 066002 (2015)

    Google Scholar 

  94. W Yu, B W Li, M Y Yu, F He, S Ishiguro and R Horiuchi Phys. Plasmas 12 103101 (2005)

    Google Scholar 

  95. F He et al. Plasma Science and Tech 7 2968 (2005)

    Google Scholar 

  96. N S Akintsov, A P Nevecheria and A A Martynov St. Petersburg State Polytechnical University J. Phys. and Math. 16 132 (2023)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Bagrov V. G. and Prof. Epp V. Ya. for their insightful comments.

Funding

This work was partially supported by the Nantong Science and Technology Plan Project (Grant Nos. JC2020137, JC2020138), the Key Research and Development Program of Jiangsu Province of China (Grant No. BE2021013-1), the National Natural Science Foundation of Jiangsu Province of China (Grant No. BK20201438), and in part by the Natural Science Research Project of Jiangsu Provincial Institutions of Higher Education (Grant Nos. 20KJA510002, 20KJB510010).

Author information

Authors and Affiliations

Authors

Contributions

N.S. Akintsov helped in conceptualization, methodology, writing—original draft, writing—review & editing. A.P. Nevecheria contributed to validation and writing—review & editing. G.F. Kopytov investigated the study.

Corresponding author

Correspondence to Nikolai Akintsov.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akintsov, N., Nevecheria, A. & Kopytov, G. Modulated laser-induced acceleration of a relativistic charged particle. Indian J Phys 98, 1123–1137 (2024). https://doi.org/10.1007/s12648-023-02855-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02855-0

Keywords

Navigation