Skip to main content

Advertisement

Log in

A concise chemoenzymatic total synthesis of neutral Globo-series glycosphingolipids Globo A and Globo B, and Forssman and para-Forssman antigens

  • Research
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Globo A is a neutral Globo-series glycosphingolipid (GSL) that shows natural properties of a cytotoxicity receptor NKp44 binding ligand. The highly complex heptasaccharide glycan structure of Globo A combined with its biological profile provides a unique target for the development of a synthetic method to facilitate its bioactivity studies. Here, a concise chemoenzymatic route to the synthesis of Globo A and its α1,3-galactose-linked congener Globo B is reported. The key to success was the use of a synthetic azido β-Globo H sphingosine (Globo H-βSph) as an acceptor substrate and two glycosyl transferases, an α1,3-N-acetylgalactosaminyltransferase from Helicobacter mustelae (BgtA) and a human blood group B α1,3-galactosyltransferase (h1,3GTB), for stereoselective construction of the terminal α1,3-GalNAc and α1,3-Gal linkages, respectively. The azido-Sph lipid sidechain is further elaborated by reduction and a chemoselective N-acylation to complete the total synthesis of the neutral Globo-series GSLs. In addition, the synthesis of Forssman and para-Forssman antigens were prepared. The strategy may be suitable for accessing other complex GSLs and related lipid-modified GSL derivatives.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

Data availability

The data that support the findings presented in the current report are included in this article and the supplementary material.

References

  1. Schjoldager, K.T., Narimatsu, Y., Joshi, H.J., Clausen, H.: Global view of human protein glycosylation pathways and functions. Nat. Rev. Mol. Cell Biol. 21, 729–749 (2020)

    Article  CAS  PubMed  Google Scholar 

  2. Reily, C., Steawrt, T.J., Renfrow, M.B., Novak, J.: Glycosylation in health and disease. Nat. Rev. Nephrol. 15, 346–366 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hakomori, S.: Structure and function of glycosphingolipids and sphingolipids: recollections and future trends. Biochem. Biophys. Acta. 1780, 325–346 (2008)

    Article  CAS  PubMed  Google Scholar 

  4. Schnaar, R.L., Sandhoff, R., Tiemeyer, M., Kinoshita, T.: Glycosphingolipids, in Essentials of Glycobiology, 4th ed. ; Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Mohen, D., Kinoshita, T., Packer, N.H., Prestegard, J.H., Schnaar, R.L., Seeberger, P.H. Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY (2022)

  5. Wennekes, T., van den Berg, R.J.B.H.N., Boot, R.G., van der Marel, G.A., Overkleeft, H.S., Aerts, J.M.F.G.: Glycosphingolipids-nature, function, and pharmacological modulation. Angew. Chem. Int. Ed. 48: 8848−8869 (2009)

  6. Hannun, Y.A., Obeid, L.M.: Sphingolipids and their metabolism in physiology and disease. Nat. Rev. Mol. Cell Biol. 19, 175–191 (2018)

    Article  CAS  PubMed  Google Scholar 

  7. Zhuo, D., Li, X., Guan, F.: Biological roles of aberrantly expressed glycosphingolipids and related enzymes in human cancer development and progression. Front. Physiol. 9, 466 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kannagi, R., Cohran, N.A., Ishigami, F., Hakomori, S., Andrews, P.W., Knowles, B.B., Solter, D.: Stage-specific embryonic antigens (SSEA-3 and -4) are epitopes of a unique Globo-series ganglioside isolated from human teratocarcinoma cells. EMBO J. 2, 2355–2361 (1983)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bremer, E.G., Levery, S.B., Sonnino, S., Ghidoni, R., Canevari, S., Kannagi, R., Hakomori, S.: Characterization of a glycosphingolipid antigen defined by the monoclonal antibody MBr 1 expressed in normal and neoplastic epithelial cells of human mammary gland. J. Biol. Chem. 259, 14773–14777 (1984)

    Article  CAS  PubMed  Google Scholar 

  10. Hunter, C.D., Guo, T., Daskhan, G., Richards, M.R., Cairo, C.W.: Synthetic strategies for modified glycosphingolipids and their design as probes. Chem. Rev. 118, 8188–8241 (2018)

    Article  CAS  PubMed  Google Scholar 

  11. Danishefsky, S.J., Shue, Y.K., Chang, M.N., Wong, C.H.: Development of Globo-H cancer vaccine. Acc. Chem. Res. 45, 643–652 (2015)

    Article  Google Scholar 

  12. Wei, M.M., Wang, Y.S., Ye, X.S.: Carbohydrate-based vaccines for oncotherapy. Med. Res. Rev. 38, 1003–1026 (2018)

    Article  PubMed  Google Scholar 

  13. Clausen, H., Watanabe, K., Kannagi, R., Levery, S.B., Nudelman, E., Arao-Tomono, Y., Hakomori, S.: Blood group A glycolipid (Ax) with globo-series structure which is specific for blood group A1 erythrocytes: one of the chemical bases for A1 and A2 distinction. Biochem. Biophys. Res. Commun. 124, 523–529 (1984)

    Article  CAS  PubMed  Google Scholar 

  14. Ito, K., Shiraishi, R., Higai, K.: Globo-A binds to the recombinant natural cytotoxicity receptor NKp44. Biol. Pharm. Bull. 41, 1480–1484 (2018)

    Article  PubMed  Google Scholar 

  15. Breimer, M.E., Jovall, P.A.: Structural characterization of a blood group A heptaglycosylceramide with Globo-series structure: the major glycolipid based blood group A antigen of human kidney. FEBS Lett. 179, 165–172 (1985)

    Article  CAS  PubMed  Google Scholar 

  16. Fenderson, B.A., Andrews, P.W., Nudelman, E., Clausen, H., Hakomori, S.: Glycolipid core structure switching from globo- to lacto- and ganglio-series during retinoic acid-induced differentiation of TERA-2-derived human embryonal carcinoma cells. Dev. Biol. 122, 21–34 (1987)

    Article  CAS  PubMed  Google Scholar 

  17. Lindsted, R., Larson, G., Falk, P., Jodal, U., Leffler, H., Svanborg, C.: The receptor repertorie defines the host range for attaching Escherichia coli strains that recognize Globo A. Infect. Immun. 59, 1086–1092 (1991)

    Article  Google Scholar 

  18. Chiang, P.Y., Adak, A.K., Liang, W.L., Tsai, C.Y., Tseng, H.K., Cheng, J.Y., Hwu, J.R., Yu, A.L., Lin, C.C.: Chemoenzymatic synthesis of Globo-series glycosphingolipids and evaluation their immunosuppressive activities. Chem. Asian J. 15, e202200403 (2022)

    Article  Google Scholar 

  19. Wen, L., Edmunds, G., Gibbons, C., Zhang, J., Gardi, M.R., Zhu, H., Fang, J., Liu, X., Kong, Y., Wang, P.G.: Toward automated enzymatic synthesis of oligosaccharides. Chem. Rev. 118, 8151–8187 (2018)

    Article  CAS  PubMed  Google Scholar 

  20. Yu, H., Chen, X.: One-pot multienzyme (OPME) systems for chemoenzymatic synthesis of carbohydrates. Org. Biomol. Chem. 14, 2809–2818 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yi, W., Shen, J., Zhou, G., Li, J., Wang, P.G.: Bacterial homologue of human blood group A transferases. J. Am. Chem. Soc. 130, 14420–14421 (2008)

    Article  CAS  PubMed  Google Scholar 

  22. Li, P.J., Huang, S.Y., Chiang, P.Y., Fan, C.Y., Guo, L.J., Wu, D.Y., Angata, T., Lin, C.C.: Chemoenzymatic synthesis of DSGb5 and sialylated globo-series glycans. Angew. Chem. Int. Ed. 58, 11273–11278 (2019)

    Article  CAS  Google Scholar 

  23. Cai, L., Guan, W., Kitaoka, M., Shen, J., Xia, C., Chen, W., Wang, P.G.: A chemoenzymatic route to N-acetylhexosamine-1-phosphate analogues: substrate specificity investigations of N-acetylhexosamine 1-kinase. Chem. Commun. 2944–2946 (2009)

  24. Guan, W., Cai, L., Wang, P.G.: Highly efficient synthesis of UDP-GalNAc/GlcNAc analogues with promiscuous recombinant human UDP-GalNAc pyrophosphorylase AGX1. Chem. Eur. J. 16, 13343–13345 (2010)

    Article  CAS  PubMed  Google Scholar 

  25. Seto, N.O.L., Palcic, M.M., Hindsgaul, O., Bundle, D.R.: Expression of a recombinant human glycosyltransferase from a synthetic gene and its utilization for synthesis of the human blood group B trisaccharide. Eur. J. Biochem. 234, 323–328 (1995)

    Article  CAS  PubMed  Google Scholar 

  26. Zhong, K., Ye., J., Zhu, X., Cao, H., Liu, C.C.: Highly efficient biocatalytic cascade for the diversity-oriented synthesis of complex blood group Sd antigens. Green Chem. 22, 8002–8011 (2020)

    Article  CAS  Google Scholar 

  27. Zhang, J., Liu, D., Saikam, V., Gadi, M.R., Gibbons, C., Fu, X., Song, H., Yu, J., Kondengaden, S.M., Wang, P.G., Wen, I.: Machine-driven chemoenzymatic synthesis of glycopeptide. Angew. Chem. Int. Ed. 59, 19825–19829 (2020)

    Article  CAS  Google Scholar 

  28. Fang, J., Li, J., Chen, X., Zhang, Y., Wang, J., Guo, Z., Zhang, W., Yu, L., Brew, K., Wang, P.G.: Highly efficient chemoenzymatic synthesis of α-galactosyl epitopes with a recombinant α (1,3)-galactosyltransferase. J. Am. Chem. Soc. 120, 6635–6638 (1988)

    Article  CAS  Google Scholar 

  29. Siddiqui, B., Hakomori, S.I.: A revised structure for the Forssman glycolipid hapten. J. Biol. Chem. 264, 5766–5769 (1971)

    Article  Google Scholar 

  30. Ångstrçm, J., Karlsson, H., Karlsson, K.A., Larson, G., Nilson, K.: GalNAcβ1,3 terminated glycosphingolipids of human erythrocytes. Arch. Biochem. Biophys. 251, 440–449 (1986)

    Article  Google Scholar 

  31. Young, W.W., Hakomori, S.I., Levine, P.: Characterization of anti-Frossman (anti-Fs) antibodies in human sera: Their specificity and possible changes in patients with cancer. J. Biol. Chem. 123, 92–96 (1979)

    CAS  Google Scholar 

  32. Smorodin, E.P., Kurtenkov, O.A., Sergeyev, B.L., Afanasyev, V.P.: The relation of serum anti-(GalNAc beta) and -para-Frossman disaccharide IgG levels to the progression and histological grading of gastrointestinal cancer. Exp. Oncol. 29, 61–66 (2007)

    CAS  PubMed  Google Scholar 

  33. Tanaka, H., Takeuchi, R., Jimbo, M., Kuniya, N., Takahashi, T.: Synthesis and biological evaluation of the Frossman antigen pentasaccharide and derivatives by a one-pot glycosylation procedure. Chem. Eur. J. 19, 3177–3187 (2013)

    Article  CAS  PubMed  Google Scholar 

  34. Nunomura, S., Mori, M., Ito, Y., Ogawa, T.: A total synthesis of Frossman glycolipid, globopentaosyl ceramide IV3GalNAcαGb4Cer. Tetrahedron. Lett. 30, 6713–6716 (1989)

    Article  CAS  Google Scholar 

  35. Houliston, R.S., Bernatchez, S., Karwaski, M.F., Mandrell, R.E., Jarrell, H.C., Wakarchuk, W.W., Gilbert, M.: Complete chemoenzymatic synthesis of the Frossman antigen using novel glycosyltrasnferases identified in Campylobacter jejuni and Pasteurella multocida. Glycobiology 19, 153–159 (2009)

    Article  CAS  PubMed  Google Scholar 

  36. Feng, J., Hevey, R., Ling, C.C.: Synthesis of a Frossman antigen derivative for use in a conjugate vaccine. Carbohydr. Res. 346, 2650–2662 (2011)

    Article  CAS  PubMed  Google Scholar 

  37. Nunomura, S., Mori, M., Ito, Y., Owaga, T.: A total synthesis of para-Frossman glycolipid isolated from human erythrocyte membrane. Tetrahedron. Lett. 30, 5619–5622 (1989)

    Article  CAS  Google Scholar 

  38. Fu, X., Gadi, M.R., Wang, S., Han, J., Liu, D., Chen, X., Yin, J., Li, L.: General tolerance of galactosyltransferases toward UDP-galactosamine expands their synthetic capability. Angew. Chem. Int. Ed. 60, 26555–26560 (2021)

    Article  CAS  Google Scholar 

  39. Malekan, H., Fung, G., Thon, V., Khedri, Z., Yu, H., Qu, J., Li, Y., Ding, L., Lam, K.S., Chen, X.: One-pot multi-enzyme (OPME) chemoenzymatic synthesis of sialyl-Tn-MUC1 and sialyl-T-MUC1 glycopeptides containing natural or non-natural sialic acid. Bioorg. Med. Chem. 21, 4778–4785 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tseng, H.K., Su, Y.Y., Chang, T.W., Liu, H.C., Li, P.J., Chiang, P.Y., Lin, C.C.: Acceptor-mediated regioselective enzyme catalyzed sialylation: chemoenzymatic synthesis of GAA-7 ganglioside glycan. Chem. Commun. 57, 3468–3471 (2021)

    Article  CAS  Google Scholar 

  41. Anwar, M.T., Kawade, S.K., Huo, Y.R., Adak, A.K., Sridharan, D., Kuo, Y.T., Fan, C.Y., Wu, H.R., Lee, Y.S., Angata, T., Lin, C.C.: Sugar nucleotide regeneration system for the synthesis of bi- and triantennary N-glycans and exploring their activities against siglecs. Eur. J. Med. Chem. 232, 114146 (2022)

    Article  CAS  PubMed  Google Scholar 

  42. Li, S. P., Hsiao, W. C., Yu, C.C., Chien, W.T., Lin, H.J., Huang, L.D., Lin, C.H., Wu, W.L., Wu, S.H., Lin, C.C.: Characterization of Meiothermus taiwanensis galactokinase and its use in the one‐pot enzymatic synthesis of uridine diphosphate‐galactose and the chemoenzymatic synthesis of the carbohydrate antigen stage specific embryonic antigen‐3. Adv. Synth. Catal. 356, 3199–3213 (2014)

  43. Nishimoto, M., Kitaoka, M.: Identification of N-acetylhexosamine 1-kinase in the complete lacto-N-biose I/galacto-N-biose metabolic pathway in Bifidobacterium longum. Appl. Environ. Microbiol. 73, 6444–6449 (2007)

  44. Litterer, L., Schnurr, J., Plaisance, K., Storey, K., Gronwald, J., Somers, D.: Characterization and expression of Arabidopsis UDP-sugar pyrophosphorylase. Plant Physiol. Biochem. 44, 171–180 (2006)

  45. Bourgeaux, V., Piller, F., Piller, V.: Two-step enzymatic synthesis of UDP-N-acetylgalactosamine. Bioorg Med. Chem. Lett. 15, 5459–5462 (2005)

  46. Randriantsoa, M., Drouillard, S., Breton, C., Samain, E.: Synthesis of globopentaose using a novel β1, 3-galactosyltransferase activity of the Haemophilus influenzae β1, 3-N-acetylgalactosaminyltransferase LgtD. FEBS Letts. 58, 2652–2656 (2007)

  47. Bernatchez, S., Gilbert, M., Blanchard, M.C., Karwaski, M.F., Li, J., DeFrees, S., Wakarchuk, W.W.: Variants of the β1, 3-galactosyltransferase CgtB from the bacterium Campylobacter jejuni have distinct acceptor specificities. Glycobiology 17, 1333–1343 (2007)

Download references

Acknowledgements

This research was funded by the National Tsing Hua University, Academia Sinica (AS-GC-111-M03), the National Science and Technology Council of Taiwan (110-2113-M-007-010-MY3, 111-2114-M-007-001, and 111-2113-M-007-021), the Ministry of Education of Taiwan (111QR001I5), and Frontier Research Center on Fundamental and Applied Sciences of Matters (111B0017I5).

Author information

Authors and Affiliations

Authors

Contributions

C.-C.L. supervised the study. Y.-C.C., C.-Y.W., and P.-Y.C. performed experiments. A.K.A., and C.-C.L. wrote the manuscript with input from all authors. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Avijit K. Adak or Chun-Cheng Lin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

In memory of Professor Roland Schauer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2243 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiang, YC., Wu, CY., Chiang, PY. et al. A concise chemoenzymatic total synthesis of neutral Globo-series glycosphingolipids Globo A and Globo B, and Forssman and para-Forssman antigens. Glycoconj J 40, 551–563 (2023). https://doi.org/10.1007/s10719-023-10133-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-023-10133-8

Keywords

Navigation